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Abstract

The research performed under AFOSR grant no. AFOSR-80-0055 during the
period January 1, 1981 - December 31, 1981 is reported. The theory
formulated and results obtained are fully documented by seven published
papers which appear in Appendices A - G of this report and which represent
a complete accouﬁt of the work performed during the 1981 year. In particular,
a new and basic theory of ion-ion recombination in a dense gas has been
developed from basic microscopic principles and is fully described in

Appendix F.
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Refereed Research Publications under AFQOSR Grant

1.1 January 1, 1980 - December 31, 1980

1.

"Charge-Transfer in Three-Body Ion-Ion Recombination at Low Gas
Densities", Int. J. Quant. Chem.: Quant. Chem. Symp. 14, 477-482
(1980) .

"Ion-Ion Recombination in (X&4Y-+X) Systems at Low Gas Densities:

I. Symmetrical Resonance Charge-Transfer Contribution", J. Phys. B:
Atom. Molec. Phys. 13, 3649-3664 (1980).

"Three-Body Recombination of Rare~Gas Atomic Ions x+ with F in a
Low-Density Gas X", with T. P. Yang, J. Chem., Phys. 73, 3239-3245
(1980) .

"Theoretical Treatment of Collisions of Rydberg Atoms with Neutral
Atoms and Molecules. The Semiquantal, Impulse and Multistate-~
Orbital Theories'", Phys. Rev. A 22, 2408-2429 (1980).

"Ion-Ion Recombination in (Xf4Y-+Z) Systems at Low Gas Densities. II.
Elastic Ion-Neutral Collisions", J. Phys. B: Atom. Molec. Phys. 14,

915-934 (1981).

Separate copies of reprints of all of these publications (1) - (6) have

already been forwarded during the course of the 198l-year and were fully documented

in the interim report for the previous year (1980).

1.2 January 1, 1981 - December 31, 1981

6.

"Thermal Collisions of Rydberg Atoms with Neutrals'', J. Phys. B:
Atom. Molec. Phys., L657-663 (1980).

"Vibrational Deactivation of Oxygen Ions in Low Velocity 02+(X 3“8’
v=1) + 02(X 32;, v=0) Collisions", with T. F. Moran, K. J. McCann,

M. Cobb and R. F. Borkman, J. Chem. Phys. 74, 2325-2330 (1981).
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8. '"Ion-Ion Recombination as a Function of Ion and Gas Densities",
Chem. Phys. Letts. 80, 541-546 (1981).

9. "Exact Closed Form Solution of the Generalized Debye-Smoluchowski
Equation", Phys. Rev. Letts. 47, 163-166 (1981).

10. "Ion-Ion Recombination in Dilute and Dense Plasmas', Int. J. Quant.
Chem.: Quant. Chem. Symp. 15, 715-727 (1981).

11. "Theory of Ion-Ion Recombination", Phil. Trans. Roy. Soc. (London)
A 304, 447-497 (1982).

12. "Analytical Solutions of the Debye-Smoluchowski Equation for Geminate

and Homogeneous Recombination and for Fluorescence Quenching",
Phys. Rev. A 25, 3403-3406 (1982).
Copies of all of the above papers {6-12 appear as Appendices A - G of this
These papers represent the research work performed during 1981,

interim report.

under the present AFOSR grant.

2. Papers Presented at Scilentific Meetings

1. "Basic Microscopic Theory of Ion-Ion Recombination", Invited Lecture

presented at International Symposium on Atomic, Molecular and Solid State
Theory, Florida, March 9-14, 1981
"Basic Microscopic Theory of Neutralization and of Chemical Reactions in

Dense Gases', Special Long Paper (30 mins.) delivered at 34th Annual

Gaseous Electronics Conference, Boston, Mass., October 20-23, 1981.
"Theory of Chemical Reactions in Dense Gases', delivered at Thirteenth
Annual Meeting of the Division of Electron and Atomic Physics (APS/DEAP),

New York, December 3~5, 1981.
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3. Special Highlights: New Theoretical Developments in Present Research

’l A new and basic theory of ion-ion recombination as a function of gas

~ density N has been developed (M. R. Flannery, Phil. Trans. Roy. Soc. A) from
basic microscopic principles. A key equation for the distribution in phase
space of ion pairs has been derived together with an expression for the

resulting recombination coefficient a. Further development of the theory leads

BRI e e a4 ey el e s I s aar s o gl g

to interesting insights to a full variation with N of a, which is shown to yield

the correct limits at low and high N. The recombination rate g is determined

T IEW ST

by the limiting step of the rate aEN for ion reaction and of the rate arp for

ion transport to the reaction zone. An accurate amalytical solution of the time-

oL T

dependent Debye-Smoluchowski equation which is a natural conrsequence of this

e,

YT TY WY

theory, has been provided, for the first time, for transport/reaction under a

general interaction V in the cases of an instantaneous reaction (aRN >> aTR)

" aTR) of reaction within a kinetic sink rendered

RN

compressible via variation of gas density. Expressions for the transient

N E and of a finite rate (a

recombination rates a(t) have then been derived and illustrated. The exhibited

'l time dependence lends itself to eventual experimental verification at high N.

TV Y

A theory which investigates the variation of o with ion density N? has

also developed. Here the ion-ion interaction V can no longer be assumed ab-

\ o s Al i 1 el &)

initio to be pure Coulomb but is solved self-consistently with the recombination.

é ‘ Recombination rates for various systems have been illustrated as a function of
s N via a simplified method for the reaction rate. Finally, two theoretical

3

b - procedures for the solution of the general phase-space ion distributions have

been proposed.
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Appendix A

B Thexmal Collisions of Rydberg Atoms with Neutrals, J. Phys. B: Atom.

- Molec. Phys., L657-663 (1980).

3




|
?

Aokt S

oy

PPy

----------
.........

1. Phys. B: Atom. Molec. Phys. 13 (1980) L657-L663. Printed in Great Britain

LETTER TO THE EDITOR

Thermal collisions of Rydberg atoms with neutrals

M R Flannery
School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA

Received 17 July 1980

Abstract. A new theoretical method outlined here for an important inelastic mechanism
based on A-B” encounters in A-B(n) thermal collisions indicates a substantial contribution
to /-changing transitions which therefore cannot be viewed as proceeding via (e-A)
encounters alone. Recent descriptions of /-changing thermal collisions which are based on
an (e-A) impulse treatment appear defective in that they disregard certain impulse validity
criteria and yield results which greatly exceed the upper limit specified by the basic impulse
expression, and do not recognise the above important inelastic mechanism associated with
the non-inertiality of the core.

In the collision process,

B(n')
B*+e
between an incident atom (or molecule) A and a target atom B initially in a highly
excited state with principal quantum number #, energy and momentum changes to the
Rydberg electron (labelled 1) can be assumed, under certain conditions (see Flannery
1980 and below), to occur via a collision of 1 with the projectile A (labelled 3). A (1-3)
inelastic encounter includes the additional possiblity of simultaneous (i -» ) transitions
in the internal state of A. Based on this premise, a semiquantal treatment was
developed (Flannery 1970, 1973) mainly for the ionisation channel in (1) and was
recently derived (Flannery 1980) from the basic quantal impulse expression (cf Cole-
man 1969) in which the wavefunction for the ejected electron is replaced by a plane
wave.

The three basic assumptions within the impulse approximation to A-B(n) collisions
become fully transparent from a derivation (Flannery 1980) based on the two-potential
formula and they are as follows.

(i) Theinteractions V,,and V;, of 1 and 3 with the core B* (labelled 2) are switched
off during the (1-3) collision time and V/, is invoked only to establish the initial and
final quantal states of the target system.

(ii) The distortion of the motion of the projectile 3 in the field V3, due to the core 2
is neglected when interacting with both 2 and with the Rydberg electron 1.

(iii) Inelastic transitions in B are prohibited in direct (A-B*) encounters.

Although (i)-(iii) may be justified for many kinds of A-B(n) direct collision
processes at sufficiently high »n and collision speeds v; >» v, the orbital speed of the
Rydberg electron, conditions (ii) and (iii) can be seriously violated, particularly when
v1« va. Various implications of (i)-(iii), discussed below, cast serious doubts on the
overall validity of various models recently proposed (Matsuzawa 1979 and references

A()+B(n)>A(j)+ (1)

0022-3700/80/220657 +07$01.50 © 1980 The Institute of Physics L657




-
[y

L658 Letter to the Editor

therein, Hickman 1979, de Prunelé and Pascale 1979) for angular momentum [-
changing and quenching collisions between B(nl) and rare-gas atoms at thermal
energies (when v, » v3), a subject of great current experimental interest and activity
(Hugon et al 1979, 1980 and references therein, Gallagher ef al 1977). Moreover, the
models are based on further simplification such as a Born or §-function reduction with-
in the basic impulse expression and, as such, entail additional validity criteria. The
models yield results greatly in excess of the actual upper limit imposed by the basic
impulse expression (cf Flannery 1980). Also they neglect the effect of thermal (2-3)
collisions which are, in fact, important.

(iv) Although not essential to the impulse treatment, ‘on-the-energy-shell’ (1-3)
encounters in all applications to A-B(n) collisions are tacitly assumed, a procedure
valid only in the high-energy or weak-binding limit.

Assumptions (i)-(iii) above imply important conditions of special significance to
A-~B(n!) thermal collisions.

Condition A. Switching off the core interactions (V12 + Vi;) during the (1-3) collision
time 7. implies that energy can be controlled only to within an imprecision AE; ~ /7.
during the collision, i.e. the energy dependence of the electron-1-projectile-3 cross
section o3 must not exhibit too rapid a variation as occurs, for example, in the
neighbourhood of an electron-atom resonance in which a negative ion A™ is
temporarily formed, or in the vicinity of a Ramsauer minimum evident for e-Ar, Kr and
Xe scattering. This implication is ignored by Matsuzawa (1979) in his resonance and
I-changing studies, by Hickman (1979) and by others (e.g. de Prunelé and Pascale).
When v, » v3, 7.~ A n(au) where A (ao) is the (e~A) interaction distance such that
during 7. the energy imprecision AE; ~ (A1n)"" au is comparable with the small impact
energy 3v}. For vs3»v,, however, AE;~vs/A; which is very much less than 3v3 the
relative energy over which o3 generally varies slowly.

Condition B. The momentum P transferred (impulsively) to 1 during the collision time
r. must be very much greater than the momentum imparted to 1 during the same time
via the force F due to its interaction V), with the core, i.e.

Tc
P> [ Fat=lul-VValduln=~sitr (a)

where ¢, is the electronic wavefunction for the Rydberg electron with orbital period
T, ~n* au for each / such that

re< T, (I+}P. (2b)

If V. varies sufficiently slowly (but need not be necessarily smail!) over the range
A, of the collision interaction V3, such that the force F(m= —V V},) due to the core is
small in comparison with the impulsive force (—V V,) due to the Rydberg electron-
projectile interaction, then (2) is satisfied; in this sense V,, can be regarded as
‘quasiclassical’,

For ionising collisions, P> n ', then 7.« T, for circular orbits (! ~ n) and 7.« T,/n
for highly eccentric orbits (/~0). Hence, the requirement r.«< n? covers electron
ejection from all orbits. For non-ionising collisions, P by (2) cannot become arbitrarily
small, which could occur for quasi-elastic or /-changing collisions. At thermal energies,
the electron speed v, ~n ™' au is greater than the incident speed v;~10~* au of A for
most n of interest, and the collision time 7. ~ A 1n for e~rare-gas atom scattering (where
A, ~(1-7)ao) such that (2) implies that P» A,/n*(/+%). The angular momentum
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change (for fixed n) due to (e-A) impulsive encounters at R;, from B* must satisfy
AL ~ P(Ry5) ~3P[3n* —1(1+ 1)]»3A,[3n% ~ 11+ 1))/n*(1 +3) 3)

which is, in general, fulfilled only at the highest initial / when the permitted AL »
A;/(l~n). Small initial / require large changes AL » A, for validity of the impulse
model (since then the momentum imparted by the core on the highly elliptical orbits
becomes considerably strengthened over that for circular orbits). The above consi-
derations are absent in any previous /-changing study (Matsuzawa 1¢:79, Hickman
1979, de Prunelé and Pascale 1979).

Condition C. Since the distortion of V3, on the projectile 3 is neglected, the contribu-
tion to the basic impulse T-matrix element from (2-3) collisions is real and is
non-vanishing only for elastic transitions in the target (Flannery 1980), the cross section
for all elastic and inelastic events is, from the optical theorem, given in both the basic
impulse expression and the semiquantal treatment by (Flannery 1980),

1
Bw)=- [ let)Pronot @il ak, @)

where |g;|* is the probability that the Rydberg electron has momentum k;, where 13 is
the total cross section for all elastic and inelastic (1-3) collisions at relative speed v,3 and
where v is the speed of the projectile A in the (A-B*) centre-of-mass reference frame.
This cross section (4) is an upper limit to any collision process satisfying specific criteria
for the validity of the impulse approximation and states that the rate (v;033) for all
A-B(n) elastic and inelastic processes is essentially limited to the tota] rate of free
Rydberg e-A collisions. For v; > v,, as in thermal collisions, then

13 (03) = (1613(11))/ V3 = B1013(01)/ 0> 5)

where the average is taken over the distribution in orbital speed v; of the Rydberg
electron. de Prunelé and Pascale (1979) (and also Matsuzawa 1979) have correctly
conjectured that (5) can be deduced from the semiquantal formulation of A-B(n)
collisions. However, many treatments (Matsuzawa 1979, Hickman 1979) of {-changing
collisions alone, which are simple derivatives of the basic impulse expression, yield
results much larger than (4) or (5) in violation of the impulse upper limit. Curiously
enough, their apparent agreement with experiment does not substantiate the assertion
that /-changing collisions at thermal energies originate solely from slow Rydberg
e~-atom encounters. That the (1-3) impulse upper limit yields values much lower than
experiment (see table 1 and semiquantal results calculated by de Prunelé and Pascale
(1979)) simply infers that an important mechanism, discussed below and based on 2-3
encounters, has not been acknowledged.

Condition D. Assumption (ii) based on the neglect of distortion of V3, on 3 while
interacting with 1 implies that 1 and 2 behave as separate and as independent scatterers.
This is valid provided (a) that the (1-2) separation R;;=n;ao>» A, ,, the scattering
lengths or amplitudes for (1-3) and (2--3) collisions, and (b) that the reduced wavelength
A3 for (i-3) relative motion is very much less than R1;, so that A, is not affected by the
presence of A, (and vice versa). In general, X3 « n? for high impact speeds v3 » v;, and

for thermal-energy collisions when v, » v; such that A;3~v;' =n; and A;,« n2,

Moreover, for (2-3) collisions at thermal energies X;5 ~ k3" =107 (see table 1). Hence

PRI VN YOG vy v
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R?, » X;3A; such that multiple scattering can be neglected. Curiously enough, condi-
tion D is the one most easily satisfied in A-B(n) collisions and is the only condition of all
here which receives consideration in previous studies.
Condition E. Atthermal energies distortion of 3 due to the core 2 cannot be ignored, as
in assumption (ii), and the cross section for B*-A elastic thermal collisions are large,
about 10° A? (cf Dalgarno 1970). The impuise expression customarily adopted (cf
Coleman 1969) must be appropriately generalised. The result (Flannery 1980) involves
a nine-dimensional integral for the T matrix rather than the usual three dimensional
integral, and appears valuable only in promoting deeper understanding. This condition
of undistortion is closely related to D.
Condition F. However, the impulse model focuses attention on the (1-3) collision,
whether distorted by V3, or not and as such does not contain any inelastic electronic
transitions due to direct (2-3) encounters (assumption (iii)). Effective allowance for
inelastic transitions via (2-3) collisions due to the non-inertiality of the target core 2 can
be readily obtained (Flannery 1980). Let the impulse procedure treat the (1-3)
encounter, for which purpose it has been designed. Then in the absence of the
interaction V3 between the incoming projectile 3 and the Rydberg electron 1, the
Hamiltonian for the complete A-B(n) system of reduced mass Mag is
#? ) W, , 2
2M12Vr ZMABVR+ Va(R') - (6)

where the vector R’ of 3 relative to 2, in terms of its position R relative to the (1-2)
centre-of-mass and r the vector separation of (1-2) of reduced mass M, is given by

H=-

R =R+ (M,/M)r M=M,+M, @)
where M, is the mass of particle i. The (2-3) interaction can then be expanded as
VR = Vas(RY+ (M, /M)r .VV,u(R)+. . .. 8)

The full scattering solution for H can be expanded in terms of the target basis
{#.(r)}, and a hierarchy of quantal and semiclassical approximations exist (to various
degrees of sophistication) which are based on matrix elements,

Vi(R) =(;(r)| V23(R")\#:(r))
= V23(R)8; + (M /M);(r)lrldi(r)) . VV23(R) +. . .. 9)

In particular, Flannery (1980) has shown in the sudden limit to a semiclassical
analysis, when the exponential phase factors (i€, t/#) can be ignored, (i.e. the collision
time ¢ is assumed small in comparison with the time #/¢;, for transitions between highly
excited levels 7 and f with energy separation €, or else the important levels n and f are
assumed degenerate as in /-changing transitions), that the differential cross section for
(i -» f) transitions in the target B via A-B* (2-3) encounters is

doy doss

(S2) = 1Bute. 1> 0 F2) (10)

where (do,3/d(1) is the differential cross section for (2-3) elastic scattering and where

Byip, t »00) = <¢l(")' exp[i(%)r. Jl-oao

-~

W@ o) an

is the probability amplitude at impact parameter p for the i - f transition. Since




Y

T eTT T TT ST

Lo e i gy o A

o e e o

P

-y =

Letter to the Editor L661

(—=VVa3) in (11) is the force on 2 due to 3, the ‘impulse’
a«©

[ Fusdt= Moty ~ 0290 =Myo (12)

is the momentum M, transferred to the core 2, where 53 and v253 are the initial and
final velocities of the (2-3) collision system with reduced mass M,;. Thus, the
probability of the (i - f) transition is

|By(p, t > 0))* = (¢/(r)| exp(iM120. r)|¢pi ()] (13)

the absolute square of the inelastic atomic form factor which, when summed over al!
final states, yields unity. A simple interpretation of (13), based on the recognition that
the Rydberg electron which is bound to the core at rest before the collision, finds itself
relative to a moving core after the collision, can be provided (Flannery 1980). Account
of the translational factor so introduced (as in hydrogenic travelling orbitals ¢1) and the
sudden approximation |(¢1/¢;)|’ for the transition probability yields (13).

The total cross section for all elastic and inelastic transitions based on (2-3)
collisions from (10) and (13) is given by

o33 (U32) = 055 (v32) (14)

which is therefore an upper limit. A highly accurate representation of the integral
elastic cross section is provided by the semiclassical expression (see Dalgarno 1970),
2/3
755 (v37) = 1-0688 X 10’(“—';@) al (15)
3

where aay is the polarisability of 3 and where ks(au) is the momentum of the (A*-B)
system with reduced mass M g(amu). A preliminary assessment based on the upper
limits (5) and (15) can now be made.

The table illustrates (5) and (15) for thermal (520 K) collisions of Rb(15F) with rare
gases RG(He, Ne, Ar, Kr and Xe) for which v, » v;. The (e-RG) cross section o;3(v,)
were obtained from the phaseshifts of Yau et al (1979, 1980) and were so normalised as
to reporduce measurements (where available) of the scattering length A, (since for He,
Ne and Ar the calculated scattering lengths were 13% lower, 11% lower and 40%
higher than the respective measurements (cf Yau ef al 1979, 1980)). The first value in
the range o3 arising from (1-3) elastic collisions corresponds to o3 =47A? at zero

Table 1. Maximum cross sections (A?) for Rb(1 5F)-rare-gas (RG) collisions at 520 K based
on the sum of (e-RG) elastic encounters with cross section o' and on (Rb*-RG) elastic
encounters with cross section o33. The relative speed, momentum and polarisability of the
incident RG atom are v3, k3 and a respectively. The measurements (Exp) are taken from
table 1 of Hugon et al (1979).

RG  05(107%auw) kiyaw)  alad) oS (AY)  oF(AY (03 +o3)A?  Exp(A?)
He 7-757 5-405 1-384  2.95* (4-28°4-91%)  (7-23%-7.86%) (8-1%1.6)
Ne 3.754 11-17 2:666  7-41° (5:63'-1.74%)  (7-982-9-15%) —

Ar 2:907 14-42 1107 2277 (1-823-3-523)  (4-09°-2:62") (2:5¢0-5)°
Kr 2-332 17-98 1674 3.47° (1-78-3.66%) (2:13%-7-13}) —

Xe 2-108 1986 2726 513 (6-80°-1.00*)  (7-31*-1.51%) (2-0+0-7)*
1295w 2:95%10%,




‘Appendix B

Vibrational Deactivation of Oxygen Ions in Low Velocity 0.,+(X 3Hg, v=])

+0,(X 32;, v=0) Collisions, with T, F. Moran, K. J. McCann, M, Cobb

and R. F. Borkman, J. Chem. Phys. 74, 2325-2330 (1981).
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Vibrational deactivation of oxygen ions in low velocity
03 (X7 ;v =1)+0,(X v =0) collisions

T. F. Moran, K. J. McCann, M. Cobb, R. F. Borkman, and M. R. Flannery

School of Chemistry and School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332

{Received 8 August 1980; accepted 7 November 1980)

The deactivation of 0} (X */I,, v = 1) ions in collisions with 0,(X ’2;,u = 0) molecules has been examined
using multistate impact parameter eikonal and orbital treatments. Cross sections for the formation of various
product states in the charge exchange and direct scattering channels have been computed for ions with 0.5 to
8.0 eV c.m. kinetic energies. The relative probabilitics for forming products in given vibrational states at the
higher kinetic energies are similar for the eikonal and orbital approaches. At encrgies below several eV it is
necessary to employ the multistate orbital treatment which takes explicit account of the strong ion-molecule
scattering. Cross sections for reaction channels leading to de-excitation and/or excitation of the product
0;(X M v = 1} ions have been computed for both charge exchange and direct scattering processes. The
channels leading to vibrationally deactivated 07 (X *//,, v =0) product ions are strongly favored at low
velocities over the excitation processes in the charge exchange as well as in the direct scattering channels.

INTRODUCTION

As more information is assembled on the reactions of
ions with neutral molecules, it is becoming evident that
reaction rate constants for many processes depend
strongly on the internal energy of the reactants.! The
magnitude of the cross sections for charge transfer re-
actions of atomic ions with neutral molecules varies
widely??® depending on whether the reactant ions occupy
the ground or excited electronic state. Likewise, cross
sections for collision induced dissociation of various
molecular ions depend*’® on the vibrational and/or elec-
tronic state distributions of the ions. The influence of
the neutral target molecule vibrational state has been
examined® " in reactions of O* and Ne' ions with
N,(X!S;.v). The investigation by Albritton et al.!*® has
shown that the rearrangement reaction of 03(X *i,, v}
with CH, producing CH;O; and CHj is strongly dependent
on the O;(X ’M1,, v) vibrational state. This drift tube ex-
periment'® has clearly demonstrated that a small
amount of O,(X 3Z;,uv=0) gas, added to the Ar buffer gas,
effectively quenches the hydrocarbon rearrangement re-
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action due to vibrational deactivation of O3(X M,,u=1)
ions by charge exchange processes which result in the
formation of the much less reactive Oy(X *1,,v =0) ions.

Previous theoretical investigations have examined
charge transfer reactions in the symmetric 0;-0, sys-
tem and have shown that vibrational excitation of the
products occurs with high probability for ions in the keV
range. *!! Vibrational excitation processes are efficient
in both the direct as well as the exchange channels due
to strong coupling between these energy degenerate
channels. !*!! Differential and integral charge transfer
and direct scattering cross sections in the hundred eV
range are adequately represented by the multistate
eikonal treatment, but there is a lack of detailed infor-
mation on these processes for the oxygen system at low
(eV range) kinetic energies. The purpose of this inves-
tigation is to examine O3(X ’M,, v = 1) + O{(X *Z;, v =0)
collisions in an effort to understand the competition be-
tween the various ionic excitation and de-excitation
channels as a function of reactant ion kinetic energy.

The multistate impact-parameter treatment has been used to examine vibrational transitions occurring in the

symmetric ion-molecule system

030X 11, vo = 1) + Oy(X °Z;, uo=0)——<

0,(x ’z;,v"") + O3(x *n,,v) , (1a)

0;(x M, v') + OyX 3Z;,v"") , (1b)

where charge transfer reactions predominate. In Reaction (1a), the incident molecular O(X ,, v, = 1) ions initially
in level v, capture an electron to form fast neutral O,(X *Z;,u’’) molecules in vibrational level v’’, while in the di-
rect channel (1b) incident molecular fons are scattered with the fast product ions in level uv’. Each of the charge
transfer channels (1a) is degenerate in energy with a corresponding direct channel (1b) which leads to strong cou-
pling between the charge transfer and direct processes in this symmetric ion—molecule system. Application of the
multistate treatment to these reactions is made in the following sections.

Multichanne! eikonal treatment

The wave function which represents the time-depen-
dent response of the internal motions of the system un-
der the influence of the mutual interaction V(R, r) is de-
scribed by
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U ‘
¥(r,R=_S SClp, Z)¥y(r) exp[ - (ESN)] , (2)

where ¥5(r) are a complete set of molecular eigenfunc-
tions (with electronic, vibrational, and rotational parts)
describing the unperturbed Hamiltonian ¥, for the iso-
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2326 Moran et al.: Vibrational deactivation of oxygen ions

lated system at infinite center -of -mass separation R
with eigenenergies E;. The index a denotes whether the
labeled quantities refer to direct channels D or to charge
exchange channels X. The quantity r denotes the collec-
tion of internal coordinates on each center. Substitution
of the wave function (2) into the time-dependent Schro-
dinger equation results'? in the following set of coupled
equations for the transition amplitudes C(f):

i9C7{p, /8t =SV(R)P;.Clp, 1) explie ) ,
f=12,....N, (3)

which are solved numerically subject to the boundary
condition that the direct channel i is initially populated,
i.e., C2p, =©)=6,,, CXp, -~)=0. Matrix elements
P,, are equal to F(v;,v,)F(v,,v,’), where F(v;,v,’) is
the vibrational overlap for the O3(X 2Ml,,u = 1)~ O,(X °Z;,
v’’) trangition. When a denotes X in Eq. (3), & refers
to D and vice versa. Differences €, in the internal
energies between initial and final states of the system
are given by EJ — EJ. The equation used to compute the
scattering amplitude in the ¢. m. frame is®

7300, 00= {- 3} fexalitic- R -+, )

x explie; , Z/Bv,)(8C,(p, Z)/8Z)dR , (4)

where the incident velocity is v, =#k;/p, the momentum
change K during the collision is k; —k, with the final mo-
mentum vector k, directed along (8, ¢), and m,, is the
change in azimuthal quantum number which is taken to be
zero for the reactions under investigation here. The
ion-molecule separation vector R has spherical compo-
nents (p, $, Z), where p is the impact parameter. For
high energy collisions, a straight line trajectory is
adequate with

R()=p+wv;t, (5)

where the velocity is taken to be along the Z axis and is
perpendicular to the impact parameter. In this situa-
tion the solution of Eq. (4) is simplified by noting that
for heavy-particle collisions the Z component of the mo-
mentum transfer can be approximated by

Kl=k' - k/COSO =k' ..k,
=(€I‘/ﬁvl)[l +(”/2‘J.v¥+-c.] R (6)
Equation (4) can be simplified'’ to

f}"(o, d’) - k‘id‘l elﬂ.

x j; "I K DC2p, ) - 8y, lpdp ™

by performing the & integration. In Eq. (7), 8, is the
Kronecker delta function and J, are Beasel functions of
integral order A =m,,, and K' =(K? - k%)"? ig the mo-
mentum transfer perpendicular to the trajectory. From
these scattering amplitudes given by Eq. (7), the dif-
ferential cross section is

a;',(9)=21r£f[f7,(9,¢)|2 . (8)

Integrating Eq. (8) over angle yields the integral cross
section Q7,(v,) given by the equation
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FIG. 1. Relative probabilities (eikonal method) for formation
of specific product channels in 8.0 eV c.m. O3 (X ‘I, u{=1)

+ Op(X 32;, v§’=0) charge exchanging collisions as a function
of impact parameter distance in atomic units. The numbers
associated with each area denote the vibrational quantum num-
bers of the respective O3 (X 2H,. v’ and O, (X 32;, v’’) reaction
products.

1
Qpilv,) = fn o 5(8)d(cosb)

=211j; |C/p, =) =6, |%0dp . (9)

The interaction matrix elements V(R) necessary to
describe Reactions (1) are those used previously!! for
this system and they are considered sufficiently accu-
rate and suitable for this study. Energy defects and ac-
curate vibrational overlaps for the respective transi-
tions have been obtained from previously published
wave functions which were constructed using RKR tech-
niques.!! For the reactions of O3(X ’l1,,v = 1) ions with
0,(X *Z;, v =0) molecules, the dominant product channels
are those with small energy defects and favorable vibra-
tional overlaps. Product channels with small energy de-
fects are 1,0; 0,1; 0,0; 0,2; 1,1; 2, 0; 0, 3 (the vibra-
tional level v’ of the production is denoted by the first
number and the vibrational level v'’ of the product neu-
tral as the second number in the pair).

The computation of the cross sections for charge
transfer and direct scattering processes requires solu-
tion of the coupled differential equations (3). These cou-
pled differential equations are solved numerically by the
Burlisch-Stoer rational extrapolation technique. '
Transition amplitudes C,(p, =) determined as a function
of p from the multistate coupled equations are used to
compute the complex transition amplitudes from Eq. (4)
and transition probabilities IC%(p, =) (2 for the charge
exchange and direct scattering channels. It i8 neces-
sary to explicitly consider a total of 14 product chan-
nels in order to obtain fully converged cross sections in
the 0;-0, system at 8 eV center-of -mass kinetic energy.
The competition between the various reaction channels
is graphically displayed in Fig. 1 for the charge ex-
change channels where the relative transition probabili-
ties are displayed as a function of impact parameter.
The open area in the bottom portion of this figure rep-
resents the relative probability for the charge transfer
channel forming slow O3(X *I1,, v’ =1) ions and fast
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FIG. 2. Relative probabilities (eikonal method) for formation
of specific product channels in 8.0 eV c.m. O3(X I, vi=1)

+ O (X EG, LY’ =0) direct, inelastic scattering collisions as a
function of impact parameter distance in atomic units. The
numbers associated with each area denote the vibrational
quantum numbers of the respective O3 (X I, v’) and O, (X °Z;,
V’’) reaction products.

0,(X 2, v"" =0) molecules at different values of p for 8
eV collision energy. The cross-hatched area gives the
relative probability for producing Oy(X f1,,v’ =0)

+0,(X 33,0 =1) products. The designations of the other
various areas in this figure refer to product channels in
which the ion and neutral vibrational levels are v’ and
u"’, respectively. For example, at R equal to 3,026
a.u., the relative probabilities for the v',v'' =1, 0;
0,1;0,0. 0,2; 1,1; 2,0; and 0,3 channels are 0. 5963,
0.0303, 0.0047, 0.1249, 0.1534, 0.0868, and 0. 0036,
respectively. At large values of internuclear distance
the resonant charge transfer channel predominates;
however, at smaller values of p the inelastic charge
transfer channels become important. Similar transi-
tion probabilities for the direct channels are displayed
in Fig. 2. The notation in Fig. 2 is the same as in Fig.
1, where v’ and v”’ symbols denote the product ion and
neutral vibrational levels, respectively. The elastic
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FIG. 3. Relative probabilities (eikonal method) for formation
of specific product channels in 1.0 eV ¢, m. O}(X *l,, v}=1)

- OntX ‘2;, vy’ =0) charge exchanging collisions as a function
of impact parameter distance in atomic units. The numbers
assoclated with each area denote the vibrational quantum num-
bers of the respective O3 (X ’I,, 1*) and O, (X ’Z;, v') reaction
products,
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FIG. 4. Relative probabilities (eikonal method) for formation
of specific product channels in 1.0 eV c.m. Of(X X, v§=1)
+0,(X 3Z;, VY’ =0) direct, inelastic scattering collisions as a
function of impact parameter distance in atomic units. The
numbers associated with each area denote the vibrational
quantum numbers of the respective O3 (X ’lI,, U’) and O, (X *Z;,
v*’) reaction products.

1, 0 direct channel is not displayed but rather only the
direct inelastic channels, which are the topics of this
paper, are given in Fig. 2. At large values of R the
0, 1 channel, corresponding to de-excitation of the ion,
predominates. As R is reduced, the other inelastic
channels become relatively more important.

The influence of lowering reactant ion kinetic energy
on the relative transition probabilities is illustrated in
Fig. 3. The relative contribution of the resonant 1,0
exchange channel is larger at 1 eV than at 8 eV, i.e.,
the inelastic processes generally become less important
as the ion kinetic energy is lowered. At an impact pa-
rameter of 1.0 a.u. the different regions in Fig. 3,
from top to bottom, represent the 0,3; 2,0; 1,1; 0, 0;
0,1; and 1, 0 channels, respectively. It is to be noted
that the area corresponding to the 0, 1 channel (vibra-
tional de-excitation of the ion) is the dominant inelastic
process at 1 eV. A similar situation occurs in the di-
rect inelastic scattering channels shown in Fig. 4 with
the 0, 1 de-excitation channel playing a more important
role at lower ion kinetic energies.

The relative contributions of the different reaction
channels to the integral multistate charge transfer cross
sections are illustrated in Fig. 5. Integral cross sec-
tions for individual inelastic channels have been obtained
from Eq. (9) for a range of kinetic energies. Cross
sections for channels having large energy defects tend
to increase with ion kinetic energy, a fact consistent
with the transition probabilities presented in the pre-
vious figures. Integral cross sections for the direct
channels are presented in Fig. 6 for the same kinetic
energy range. The magnitudes of the direct inelastic
channels approximate those for the vibrationally inelas-
tic charge transfer reactions. The direct channels with
larger inelasticities begin to become important above
several eV c. m. kinetic energy. Computation of accu-
rate inelastic cross sections must take into account the
curved trajectories as the reactant partners approach
one another. The relative velocity range where the
curved trajectories start to influence the inelastic pro-
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FIG. 7. Relative probabilities (orbital method) for formation
of specific product channels in 8.0 eV c.m. O} (X "M, vf=1)
0.0 + 02(32;. U}’ = 0) charge exchanging collisions as a function of
Y l 2 3 4 5 6 7 8 9 impact parameter distance in atomic units. The numbers as-
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FIG. 5. Integral eikonal multistate cross sections (3? for
excitation of specific product vibrational states in O3 (X "’ﬂ,,

U =1) + O, (X 3Z;, V§’=0) charge exchange reactions. Cross
sections for formation of specific ion and neutral product vibra-
tional levels v/, v’/ given as a function of c. m. kinetic energy.

cess will depend on the individual system and is ex-
amined in the following section.

Mutitichannel orbital treatment

The multistate orbital description of charge transfer
uses Hamilton’s equations to determine the actual rela-
tive trajectory R(f) and the classical relative motion is
evaluated using the “averaged” Hamiltonian

3,2
x‘cs; ‘lzLL‘_) + Qlr, 1) |5 ] (e, 1), , (10)

where the first term on the right-hand side represents
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FIG. 6. Integral eikonal multistate cross sections (A2 for
excitation of specific product vibrational states in O3 (X 7n,,
Vi=1)+ Oy(X 32;. vj’ = 0) direct, inelastic scattering reactions.
Cross sections for formation of specific ion and neutral product
vibrational levels v, v’/ are given as a function of ¢. m. kinetic
energy.

sociated with each area denote the vibrational quantum num-
bers of the respective O3 (X 2Il,, v') and O, (X Z;, U’’) reaction
products.

the kinetic energy of relative motion. With the use of
the wave function (2), the second term reduces to

(e, 1] ¥(r, ) =S[|an|’en +S {0, Vin(R) ettan’]

which represents the averaged internal energy of the
collision system. This term couples the response (Eq.
(2)] of the collision partners to the relative motion via
the expansion coefficients a,(l), analogous to C,(1), in
Eq. (2) and Hamilton’s equations become

L B# (12)
and
%2‘1- =-$ .Sa:(t)a,(t)%?(m- ettt | (13)

a set of six equations, in general, or four for scatter-
ing in a plane, which must be solved simultaneously with
a coupled set (3). In order to relate the flux that flows
through the incident area pdpd¢ to the scattering solid
angle d, dp is given by

dp=(do/dQ),,d0} , (14)

where (do/d?),, is the classical difterential cross sec-
tion for scattering by Eq. (11) and is just the Jacobian
of the (p, ) transformation. The differential scattering
cross section for the transition from state ¢ to state f
is computed from the equation

0,,(8) = | af(t =) |*(do/dQ), dO} , (15)

where af are the solutions of Eqs. (3) and (13), to be
differentiated from C;, the solutions of Eq. (3) with Eq.
(5). If, however, more than one ¢lassical trajectory is
scattered into solid angle Q(8, ¢), then proper acg¢ount
of interference must be taken, including the phase of the
contributing probability amplitude a;7. A full account of
the procedure used here has already been given else-
where!® in the full semiclassical treatment. The Bur-
lish—Stoer method was used to evaluate the af from
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FIG. 8. Relative probabilities (orbital method) for formation ",_:4,,.,....“.«.‘“—..............o 2
of specific product channels in 8.0 eV ¢.m. O} (X ’M,, Vj=1) 00 ek VRN T R R B

s On (X 32;, v}’ = 0) direct, inelastic scattering collisions as a
function of impact parameter distance in atomic units. The
numbers associated with each area denote the vibrational
quantum numbers of the respective 03(X “l,, 1*) and O, (X °%;,
U’’) reaction products.

which integral cross sections have been obtained using
the relation

Q= 2n fo- la¥(p, t=)|?pdp . (16)

Relative transition probabilities |a;(p, <) 12 for the
charge exchange channels are shown in Fig. 7 for the
reactions of 8 eV O3(X’Ml,,u=1) ions. The general fea-
tures displayed in this figure are very similar to the
multistate eikonal probabilities given in Fig. 1, This
similarity is also reflected in the cross sections where
the total multistate orbital charge transfer cross sec-
tion. summed over all X channels, is 31.8 A?, which is
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FIG. 9. Relative probabilities (orbital method) for formation
of specific product channels in 1.0 eV ¢.m. Of(X ’I,, v§=1)

- 0. (X ’Z;, v’ =0) direct, inelastic scattering collisions (D
channels) and charge exchanging collisions (X channels) as a
function of impact parameter distance in atomic units. The
numbers associated with each area denote the vibrational
quantum numbers of the respective O3 (X I, V') and O, (X %%,
1’’) reaction products.

0 | 2 3 4 5 6 7 8 9
KINETIC ENERGY (ev)

FIG. 10. Integral orbital muitistate cross section (AY for
excitation of specific product vibrational states in O3 (X 2[1,,
V§=1)+ Oy (X 32;, v§’ = 0) charge exchange reactions, Cross
sections for formation of specific ion and neutral product vi-
brational levels ', u’’ are given as a function of ¢. m. kinetic
energy.

close to the corresponding eikonal value of 33.6 A%,
Relative transition probabilities for the 8 eV direct scat-
tering channels in the orbital treatment are shown in
Fig. 8. The overall behavior of these orbital probabili-
ties for the D channels is similar to that for the eikonal
approach (Fig. 2) but with some structural differences
between the two at small values of R,

The differences between the transition probabilities
in the two computational approaches are further em-
phasized in Fig. 9, where relative orbital transition
probabilities at 1 eV are given for both the D and X
channels. There is very little structure in the 1 eV or-
bital transition probabilities for the inelastic scattering

30 T T T T 1 T T T
D CHANNELS
%
S 201 n
o
w — ——
2oL ]
&

0.0
0 I 2 3 4 5 6 7 8 9

KINETIC ENERGY (eV)

FIG. 11. Integral orbital multistate cross sections (1" for
excitation of specific product vibrational states in O3 (X zﬂ,.
U§=1) + O, (X 3Z;, Uf*=0) direct, Inelastic scattering reactions.
Cross sections for formation of specific ion and neutral product
vibrational levels ¥, v’/ are given as a function of ¢. m. kinetic
energy.
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the fast reactant ion ends up as a vibrationally deacti-
vated product ion.

The resonant charge transfer channel involving re-
actant O3(X ’I,,u,=1) ions has the largest cross section
of any other channel. The ratio of the cross sections for
resonant to inelastic channeis increases as the reactant
ion kinetic energy is lowered. The inelastic processes
dominant at low ion kinetic energies are those that lead
to vibrational de-excitation of the incident vy =1 ion
beam. Quantitative measure of the vibrational de-exci-
tation of the ions is given in Fig. 12, where the cross
section ratio (sum of all X and D channels with product
ion v’ =0)/(sum of the two largest X and D excitation
channels) is presented. At low kinetic energies, the
collisions that lead to vibrational de-excitation of the
incident ion beam are approximately 200 times more
probable than the vibrationally inelastic collisions.
Thus, low velocity O3(X 2l1,, vy = 1)-0,(X *Z;, v; = 0) col-
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FIG. 12. Ratios of de-excitation (0, Zv) to excitation [(1,1)
+(2,M] cross sections for O3 (X ’M,, vj=1) ions as a function
of c.m. kinetic energy in O3 (X ’,, vj=1)+ 0, (X *Z;, v}*=0)
collisions. The dashed curve illustrates the ratio for the
charge transfer channels X; the dot—dashed curve gives the
ratio for the (irect scattering channels D; the solid curve il-
lustrates the ratio summed over the X and D channels. Cal-
culations were performed using the orbital method.

processes with the v',uv’' =0, 1 channel dominating
throughout the range of R, a fact in sharp contrast to
data in Fig. 4. Likewise, the 1 eV orbital transition
probabilities for charge exchange channels are relatively
uncomplicated. The 1,0 and 0, 1 channel transition
probabilities are the largest at all impact parameters.
The absence of contributions from reaction channels
with larger energy defects in the orbital treatment is a
result of the mutual scattering by the ion-molecule
pair. The eikonal straight line approach artificially
constrains the collision to be more “violent” at small
values of R and thus overestimates the translational to
vibrational energy conversion processes. This is re-
flected in the integral cross sections computed in the
orbital treatment for the inelastic X and D channels
which are given in Figs. 10 and 11, Although the cross
sections for the inelastic channels are similar at 8 eV
for the eikonal and orbital treatments, they diverge as
the ion kinetic energy is lowered.

At ion kinetic energies below several eV, the inelastic
processes in which the reactant O3(X ’i,,uv,=1) ion is
deactivated, have the largest cross sections. The X
channel with the largest cross section at 1 eV results in
the formation of a slow ion in the v =0 level while the D
channel with the largest cross section is one in which

lisions provide an effective means for quenching vibra-
tional excitation in the incident ions.
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We present a basic theory of the link between the low and high gas-density limits to ion—ion recombination under a gen-
eral interaction ¥ which now depends on the ion density and which is determined self-consistently with the recombination.
Increase in ion density up to 101 cm™ causes littlc change to the recombination rates in direct contrast to that obtained in

recent computer simulations,

Not only is the ion—ion recombination process *
Xt+Y +Z-[XY])+2Z n

of basic theoretijcal significance [1] in its own right,
but it plays a key role in populating [2] the upper
molecular electronic states of inert gas—halide lasers
which operate not only at high densities N (=4 —10
atm) of the background gas Z but also at moderately
high densities N* = 10121014 cm-3 of the positive
and negative ions X* and Y ~. Reliable laboratory ex-
periments are difficult and are as yet not forthcoming.
All previous [3] theoretical treatments and experiments
pertain tacitly to dilute ionization for which a coulomb-
ic ion—ion interaction is correct.

The purpose of this letter is to briefly outline a basic
theory of the recombination rate a (cm3 s=1) of (1)
versus gas and ion densities, NV and V¥, respectively and
then to illustrate the key effects by appeal to a model
version. In so doing, we will raise an interesting issue
on the validity at all N of the ab initio adoption [4] of
the Debye--Hiickel interaction as a2 means of incorpo-
rating plasma sheathing effects when NV'* is raised. Bates
[5] has recently argued that this procedure is invalid at
high V.

Recombination rate a. Let the negative ions of den-
sity n7(R.r) at time ¢ stream across spheres of radius
R each centered at each positive ion distributed N ¢

* The square brackets denote that the product may not remain
bound.

cm~3. The time-dependent continuity equation is
on~(R,f)/ot — \/Y

C

- '_=_ZV)(R) [an;(R,E,,)/01] 5. %)

where the net inward current (number of ions/s across
unit area of an R sphere)

j=D[Vn"R.0)+n"R, 1) ¥ (V/KT)]

= _p e VAT [d(n~eVAT)/dR| R (2b)

arises from diffusional drift of the ions with relative
diffusion coefficient D in the gas Z under an external
field of potential V(R). The collisional-sink term is

(0n;(R,E;, 0)/3t] ¢

-M(R)

=N _%)(R) nZ(R.Ep, 1) kg(R) 3)

in terms of the phase-space densities n; (R, E}, t) of
R;-ion pairs (i.e. ion pairs with internal encrgy £; and
fixed internal separation R) and of the collisional fre-
quencies Nkg; at which R;-ion pairs are converted into
Rp-ion pairs by collision with the gas bodies Z of den-
sity N (i.e. for E; > E collisional transitions). The col-
lisional sink is effective only when the lowest bound
level —V appropriate to fixed separation R lies at or
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below the level —S of energy £_g below which the re-
combination is assumed to be stabilized against any up-
ward collisional transitions, i.e. —M is max[-V, =S].

Although expression (2a) has been derived [1] from
the full Boltzmann equation which describes the evolu-
tion of the phase-space densities n; (R, E;, t) by gas col-
lisions, it can be written down immediately from mac-
roscopic principles. The microscopic origin of the mac-
roscopic current j of (2b) is the balance of all ineffec-
tive ion—neutral collisions in the absence of the sink,
collisions which, in the presence of the sink, oversub-
scribe j by the amount (3) summed over all states i in

2a) between the lowest level —¥ and the far continuum

C. In a shell of radius R and thickness dR centered at
each positive ion, distributed N* cm~3, the number
density N *dR of ion pairs is 4tTR2dR N*n~(R) which
are assumed to decay explicitly with time as e=4’ so
that (2) becomes

R
AN? f 471R? n~(R)dR
0
dV/kT)) -
+47R? N*D[d% + —(—&[R—D]n ®)

=a;(R)n" (RN, )

where the sink term (3) on integration over the volume
of the Rz sphere has been replaced by

o (R)n"(RW*

R C -E
=N (_)/' arj 2 [N,. (R,E,.)f=Z_)Vk,.,(R)

-E
- f:L_,“M N} (R.Ep) k,,.(R)] } )

the net balance between the rates of downflow and
upflow of R-jon pairs past an arbitrary level —E of neg-
ative energy. Although this replacement can be rigorous-
ly justified [1] it is physically correct and obvious.
Under thermodynamic equilibrium when the sink is
neglected, the rhs of (5) vanishes. Since no effective col-
lisional transitions occur at R > R, the outermost
turning point associated with ~E, the flux in the rhs
of (4),

FAR)=ay(Ryn"(RIN* =aN*N~, R>R., (6)
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CHEMICAL PHYSICS LETTERS

15 June 1981

is therefore constant for R 2 Ry. The lhs of (4) times
exp(—A¢) then evolves with R to the complete time
derivative of N* with the result that the recombination
coefficient appropriate to asymptotic ion density N~

is

a=ayRp) RN, M

which is determined by the rhs of (5) evaluated at Rj.
Note from (7) that ay exp(—¥/kT) is the recombina-
tion rate ag~pn that would pertain provided a Boltz-
mann distribution (N~ e'V/"T) of ions were maintained,
i.e. a reaction rate. Although a in principle, is deter-
mined in (5) by energy-change rates k,-f and phase-
space densities n;(R,E}) of R-ion pairs, which, in turn,
are solutions of a certain Boltzmann equation {1],a
powerful approach based on prior or alternative knowl-
edge of the “reaction rate” apcrN is as follows.

Neglect in (4) of the first term, which depends on
n”(R) within R, implies,

RE
[ 4@y ar <1, ®)
0

since A = aN ™, such that N~ <€ G 1ng-)"1 and few ions
are present in the recombination volume as measured
by Rg. Then, integration of (4) under constant flux
(4nR2jN*) given by F of (6) yields,

n(R)=N"eVET 1 _ (ajorpns) PRYPRE)]
NeVRTy R
N s ®) e ©)
@perN(R) *+ apgpps(R) £

where the dimensionless quantity
PR)=R, [ R2e"* T 4R, R_=eXkT.  (10)
R

in terms of the natural unit R of length, and where
"‘TRNS(RE)=4"Ke/P(R£)‘=‘°‘H/P(RE) (11)

tends at high V to the correct Langevin—Harper rate
[3,6] ay for ions with relative mobility K in gas. Hence
(7) yields

a = opentRp)oarpys(Re)

[epcTwRg) * argnsRp)1 ™ (12)
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in terms of ey which is known, and which ~N-1, and
of the reaction rate agy and V, yet to be determined.

At low densities N. a/apgng = 0 as N2 such that
the ion density (9) is Boltzmann and agpcN may be
uniquely identified with the low density limit to a. At
low % the reactivity of the ion pairs via three-body col-
listons with the gas is slow in comparison with the rate
ol tonic transport. so that this rate limiting step is char-
actenized by ageyn - At high N, a/aypns ~ ! such that
n7(R) in (9) departs appreciably from Boltzmann for
R = Ry. As N is increased the reactivity of the ion
pairs via three-body coliisions becomes so great com-
pared with the rates of ionic transport that continued
reaction at R = R causes significant depletion in
(R ) over a localized vegion that n~(R) is far from
Boltzmann. Hence the recombination process can be
viewed as proceeding via ionic transport at rate ATRNS
followed by three-body reaction at rate agcry such
that the overall rate (12) is controlled by the rate lim-
iting step.

The above theory establishes a firm theoretical foun-
dation for (12) which, as noted previously by Bates
and Flannery [6] is intrinsic to the expression of
Natanson [7] and which is based on the equality of the
transport and reaction fluxes.

Interaction V. As N* is raised, the ion—ion interac-
tion ¥ can no longer be assumed ab initio to be purely
coulombic but is given by appropriate solution of
Poisson’s equation

V2 V(R) = (4nefe) [n*(R) — n~(R)], (13)

when the local positive and negative ion densities are
n*(R) and where ¢ is the dielectric constant of the gas
Z. In the reference frame of the positive ion, n*(R) is
the Boltzmann distribution N*eV/AT such that (13)

for an R-symmetric distribution reduces with the aid of
(9) to,

oo (B2 2OD) - amgyt e

= [1 - (afargyg ) PR)PR ) VAT,

R>R,. (14)
where the “screening” distance is

Rg = (8nN*R [ey /2. (15)
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The [ ] term, which dependson ¥V, N and R in
(14), tends to unity at low VN for all R and increases at
high N, from zero at R & Ry to unity as R — . As
Rg o0, ie. no plasma sheathing, the solution is coulomb-
ic so that an iterative solution valid for low N* (large
Rg) and high N in the vicinity of R is

VuRYKT = —R /R + (R /R¢)%exp(~R /R ),

Ry SR <R, (16)

which is pure coulombic for R <R, or for R3 <
12R,R2, ie. when N* < 1014 cm=3 at R SR, For
low N both exponential terms in the rhs of (14) are
important. When R = o0, then V <€ kT such that the
solution to (14) can be obtained for all N linearizing
the exponentials to give

VO R) > ~(€%/R) exp(~R/Rg). R~>=, (1)

the Debye—Hiickel interaction which can be used as a
starting condition for the inward integration of ( 14) from
large R.

Thus, the present method involves self-consistent
solutions of & and ¥ via (12) and (14). If an analytic
form of the reaction rate apcrN Which also depends
on V is also unknown, then (14) is coupled to (5)in
terms of the energy-change rates kir, and of the phase-
space densities n; (R,E;), which are solutions of a cer-
tain Boltzmann equation [1] which also includes V.

Reaction-rate model. Rather than solve directly for
n{(R,E;) and hence for & from (5), assume that the sink
term in (2a) can be replaced by a partially absorbing
sphere of radius R £ such that (2a) is, in effect,

I (R.t) 1 aRY -
R 5 "'(a“kl“)= Ly RYSR -R).  (18)

where I'; is the speed of reaction (via three-body col-
lisions) for ions after being brought to R by ionic
transport. In steady state, (18) incorporates the bound-
ary condition,

JRg)=T3n"(Rp), (19)

which when multiplied by 41rR,2:- is equivalent to (7)
such that

a,(Rg)=4nRLT,. (20)

thereby confirming that the strength '3 of the sink in
(18) is the speed of reaction within Rg. The solutions
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(9) and (12) follow directly from (18). For I'5 large
compared with the speed of ionic transport, as at high
N. the reactivity of the sink is effectively instantaneous
and a tends to apgys the transport rate, while low ¥
implies 'y small compared to the transport speed so
that « tends to the reaction rate agcry - It is worth
pointing out that when (18), with its rhs set to zero, is
solved subject to the boundary condition n(Rg) =0,
then the expression of Bates [8] is recovered. i.e. a is
given entirely by appng- From (19) this zero-density
boundary condition is equivalent to assigning an infini-
tely fast reaction speed I'; to the sink, as is the case at
high V. Thus (19), effectively allows for a finite reac-
tion rate associated with a partially absorbing sink,
rather than a fully absorbing sink implied by zero
n"(Rg), equates the transport current at the boundary
with the current of absorbed ions, and is valid for all
N.

On recalling that each species of ion i have different
mean free paths A; in the gas Z and different sink radii
R;. the model for the rate ag -y of reaction within
Ry is therefore generalized from (20) to give

- 1 (R2 2
ageTn(R) Rp) = TR WX ) €\ By + R WX, GE,

~RE W(Y|) W(Y,)Glw,,), (212)

where (v ,) is some averaged ion—jon transport speed
of approach, and where the probability for an ion i—
neutral Z collision for ion pairs with internal separation
R $R,~ increases with gas density to unity as [9]

WX =1 - (1/2X2)[1 — exp(=2X,)(1 + 2X,)],

X =R\, (21b)
for a straight-line trajectory. The factor
o = exp[— V(R; + \)/KT] (21¢)

acknowledges the Boltzmann enhancement in the jon-
number density due to the field at R; + A; at which the
last ineffective ion—neutral collision occurs just before
the ion enters the recombination sink within R;. The
factor
Rl'+}\l'

C,=1+3k1) [

R;

(dV/oR)dR (214d)

acknowledges the focusing effect of the interaction on
the assumed straight-line ion—ion trajectory between
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R; + ); and R;. The minimum of R and R, is Rg such
that W(Y ) W(Y,) with Y; = Rg/); is the probability
of simultaneous ion —neutral collisions within Rg, a
probability counted twice in the first two terms of
(21a). Simple geometric arguments show that G in (21a)
is either C} £ or C,£') depending on whether Ry is
R, or Ry, respectively. )

The trapping radii R; may now be deduced from
kinematical considerations. The initial Kinetic energy
of relative motion of the positive ion 1 and negative
ion 2 is

R+
Ty =3kT+ f (3V/3R)dR. (22)
R

since the ions on average are uninterrupted by collision
only for separations between R + X and R. lon pairs
upon collision with a neutral become incapable of ex-
panding outwards from R to R + A provided their final
kinetic energy T is barely sufficient to provide the
necessary energy required to increase R to R + X against
the attractive force, i.e. when

R+
T,< k[ (3V/3R)dR. (23)

Introduce a collision parameter § to be fixed later
such that the energy change T, — T¢is 8T Thus the
criteria (23) with (22) yields

VR +N) - V(R,)=3kT/5, (24)

to be solved for the trapping radii Rg; corresponding
to mean free paths A; where the subscript i is attached
to quantities associated with each species of ion. In this
strong-collision model, the interaction need only be
specified at the trapping radii Rg;. Solution of (24) for
pure Coulomb field is

Ry =3 [(1+48,R/N)'? 1]
—)61RT aSN-)O.

> (8RN asN oo, (25)

which decrease monotonically with A; and which satisfy
Ri{R; + X)) = ;M ;R . where the Thomson trapping ra-
dius Ry is 2e2/3kT.

Atlow N, A =0 and (24) sets Vi (Rg)kT equal to
~3/26 to be used directly in the rhs of Poisson’s equa-

W YW W e e Tw oW,
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tion (14) which can now be solved to yield

VL Rp)KT = —R [Rg + 5(R,/Rs)? BG),  (262)
where

B(5) =exp(3/28) — exp(-3/28). (26b)

This potential which reduces to pure coulombic for
RS R, and N* S 1014 cm=3 is almost identical to (16)
appropriate to high N. At low . the trapping radii in
(24) are therefore solutions of

2\ p3 =
B(6/18 RG) Ry + Ry =8R 27)
and, for all ¥V are given in terms of this solution Rgq by

R =3A[(1 +4Rgy /M2 - 1]
>Ry, N-0,

> (R, N oo, (28)

in analogy with (25). Finally the jow-density V limit
to(2la)is

Orpns =0 =gy + oy, = Cpdjag +Cyblar,,
(29a)

where Cjis 1 + 6,.", and

ap, =37 R3 vy N (29b)

is the Thomson partial recombination coefficient as

N = 0. The ratio ‘R; of the exact low gas-density
limit as given by the effectively exact microscopic
theory of Bates and Flannery [10] to (29b) has been
provided [11] over an extensive range of systems such
that the collision parameter §; introduced above can
now be uniquely obtained from solution of

53 +62 - R, =0 (30)

and apcpy tends, therefore, at low NV to the exact
quasi-equilibrium value [10].

Results of the present procedure, represented by
(12) with ageyy given by (21) in terms of trapping
radii (28), for the rate of

Kr* +F + Ar=>KrF* + Ar 31

at 300 K are illustrated in fig. | as a function of gas
density N for various ion densities V* up to =104 cm-3,
the validity limit of the present analysis. Results from

the universal Monte Carlo plot procedure of Bates {12]
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Fig. 1. Recombination rate coefficient o (cm3 §7!) at 300 K
for (Kr*-F ) in Ar, as a function of gas density N (in units of
Loschmidt’s number density Np =269X 1019 at STP). —:
present treatment with mobilities K = 2.16 cm?/V and K,
=3.29 em?/V s, for various ion densities N* as indicated; X :
universal Monte Carlo (hard-sphere) plot [12]; 0,4: Monte
Carlo (polarization) results [4] at N = 108 and 10'4 cm'3,
respectively.

for low N'* are also shown together with the direct
Monte Cailo computer simulations of Morgan et al. [4]
who adopted ab initio the Debye—Hiickel interaction
(17) for higher N*. The general agreement between
the various methods at low N'* can be considered ex-
cellent, but significant departure occurs at higher N'*
~ 1014 ¢cm~3. The origin of the discrepancy at high ¥
is due to the factor P(R) in (11) - :-h is murlk Y=rger
for the Debye—Hiickel intera. so+ {.7) than {ur ike
interaction (16) predicted liere, and, at low N, to the
trapping radii given by (24) which for {17) are much
smaller than those for (26) predicted here. The Debye—
Hiickel interactior (17) contains much stronger repul-
sion than either of (16) or (26). The theory outlined
here predicts little departure of rates @ up to N* =~ 1014
¢cm~3. The theory indicates via (14) that the Debye
Hiickel interaction is only valid at asymptotic R of
little significance to the recombination. At high N, the
ion distribution at R is far from Boltzmann equilib-
rinm, and V 2 kT such that linearization of even an
equilibrium distribution is not valid at these R of sig-
nificance to recombination.

In summary, therefore, we have provided here a
timely theory of « as a function of gas and ion densi-
ties, have shown how the overall recombination may
be viewed as proceeding via ion transport followed by
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reaction such that the overall rate is determined by the
rate-limiting step of transport/reaction, and have raised
a timely, interesting and important question concerning
validity of the ab initio assumption of the Debye—
Hiickel interaction in recombination studies. It will be
of great interest to see whether improved Monte Carlo
simulations which do not rely on this assumption will
confirm the present theoretical predictions which are
hased on the (a, V') self-consistent solution of the inier-
action V in the presence of the recombination a. Final-
ly. it is worth mentioning that transient *“time-depen-
dent” rates a(z) can be obtained {1] from (18) and these
are important in medical radiology and in situations
where intense ionization is deposited into or produced
as a track within a localized system either by a high-en-
ergy beam of particles or radiation.

I acknowledge the benefit of interesting discussion
with Professor Sir David Bates. The research is sponsored
by the US Air Force Office of Scientific Research under
Grant no. AFOSR-80-0055.
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Exact Closed-Form Solution of the Generalized Debye-Smoluchowski Equation

M. R. Flannery
School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332
(Recelved 9 April 1981)

The first exact solution of the time-dependent Debye-Smoluchowski equation for dif-
fusional drift under a general interaction in the presence of a reactive sink is presented.
Associated time-dependent rates of chemical reactions in a dense gas are formulated
and display the basic physical transition from reaction control to transport control as
time progresses for a system initially in Boltzmann equilibrium.

PACS numbers: 34.10.+x, 51.10.+y, 82.30.~-b, 87.15.~v

The number density n~(R, ¢) at time ¢ of some
species A (e.g., negative ions) drifting under
interaction V(R) across a sphere of radius R
towards a central species B (positive ion) in a
gas Z (or liquid) under the action of a reactive
spherical sink of extent S from B is governed by
the generalized Debye-Smoluchowski equation,

_@aTR ) (R )
det ot

=I,n"(R,t)YR-9). (1)

R = (RY(R, 1)

Here T, is the speed of reaction (via ion-pair-
gas collisions) for ions after being brought to S

by the net inward diffusional-drift current,

iR, t) = Dexp(%)%[n(k, 1) exp(;‘-’—)], (2)

in terms of the diffusion coefficient D (cm? g-!)
for relative diffusion of A and B in Z.
The number density N, of all ion pairs AB with
internal separation R = S then decays at a rate,
dy, . _d

- 2 - — b 2 + -
- [ 47 R*N*n~(R, t)dR

9,
== N FL 1SS -6, 1)]

=4183Iyn(5,t)N*=a(t)N°N~, (3)
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where F. is the rate (8™!) of generation of nega-
tive ions at infinity, and where « is the time-

dependent rate (cm?® s™!) of recombination approp-

riate to asymptotic ion densities N*. If the ion
current approaching S is absorbed by reaction
within S, then lim,. ,j(S-¢€,¢)-0. In steady
state, the rate 47R?%i(R, t) from (1) is constant
for R # S+ ¢ and equals the production rate F.
in (3).

Equation (1) automatically incorporates the
boundary condition

Fyn=(S,t)=1lim j(S+e,t) (4
€ +0

which follows on integration of (1) between S+ €
and which equates the transported and absorbed
currents at the boundary. At asymptotic R the
correct solution of (1) tends to the Boltzmann
distribution.

n-(R-=,¢)=N"exp(-V/kT). (5)

Equation (1) is of basic significance not only to
ion-ion recombination in gases' and ionic solu-
tions but also to chemical reactions in a dense
medium, to coagulation of colloids, to medical
radiology, to diffusion and field controlled reac-
tions in metabolizing systems (as enzyme-sub-
strate reactions in a cell?), and to diffusion
across a membrane. While an exact time-depen-
dent solution to (1) can be obtained? for the field-
free (V=0) case, no exact solution has yet been
determined for general V although a large body
of literature exists on various approximate tech-
niques® for the Coulomb case. We provide here
the first analytical exact solution of (1) for gen-
eral V(R), subject to the condition that n=(R, ¢ =0)
is prepared as the Boltzmann distribution (5).

The following exact solution is based on the
novel transformation from R to the variable

R={J  exp|V(R)/RTIR"*dR}"";
dR/dR =(R/R)?exp(V/kT),

which is not without its physical significance, It
is related' to the probability that an R-ion pair
will further contract by diffusion under V, in
the presence of an instantaneous sink at S, Let,

n R, t)=n"(R, t)exp(V/kT) (7N
such that (1) with (6) reduces to

(6)

am (R, 1)

o (R,t) D [, :
ot 'E'EE[R ak] (8)

subject to (4). The transformed diffusion coeffi-

»

164

cient (cm?8~") is

o).

- The form of this equation is, in the transformed
R representation, identical with that for the field-
free case in the original R representation. Ac-
cordingly, introduce scaled quantities,
#=(R/§)-1, 1=Dt/8% n’'=(R/n(R,1) (10)
such that (8) reduces to ;
an'(#, 1)/ 0T =n'(P, 1)/ 082, 11)

This can be now solved by the method of Laplace
transformation which automatically incorporates
the initial condition. The full solution of (1) aj-
propriate to spontaneous reaction [ I, - = in (4)]
is then, after some analysis,

n(SXR, t)

=N~ exp< . )[ Ee"f {2((112)2')8)( )}]

(12)
The associated recombination rate is then
al8)X(t) =4uS%(S, t)/N-
S2exp(-V(S)/kT]
S(nDt)V2 ] (13)

which tends at long time ¢>> S2/D to the steady-
state transport rate

aqpns=471SD=41DR,/P(S), (14)

where the natural unit of length R, is (e*/kT) and
where

P\S)=R,/$=R, | exp(V/RT)R*dR. (15)
Under condition of equilibrium with the field, the
Einstein relation (DR, = Ke) between D and the

mobility K is valid. For a Coulombic attraction,
the steady-state solution (14) is then

a rys' $' =41 Ke/[1 - exp(-R,/S)] (16)

in accord with that of Bates.*
The boundary condition (4) for finite reaction_
under a field is,

T, (S)n~(S, t)

= Dexp)- ‘;‘ﬁ’}{ [, l)exp( kT)]} (17

which yields, in the transformed representation

(8),

SHICOR

=aTRNS[l +
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where the transformed speed of reaction is
I',=T(dR/dR). (19)

Hence, the full time-dependent solution obtained from Laplace transformation of (11) subject to the
initial Boltzmann distribution is, for a general interaction, given by

n~(R,t)=N" exp(-V/kT)[l + (%)(g){exp&ﬁ x)expx? erfc(x+Q) - ertcfl}] . (20a)
Here the associated quantities are defined as

x(0) =1 +a,/a,XD12/s, (20b)

Q) = (R -8)/2D0"2, (20c)
and

a=d,8,/(a,+a,), (20d)
in terms of the transformed reaction and transport rates,

&,=413°T, a,=475D, (20e)
The ratio of thegse rates is, however, unchanged and given by

ga _ 478’ exp| - V(S)/kT] _ arcrn ) (21)

a; @ TRNS Q@ TRNS

Here apcyy denotes the reaction rate which from (3) is the recombination rate that would pertain
provided a Boltzmann distribution of ions were maintained as at low gas densities when j in (2) vanish-
es. The full time-dependent recombination rate is now given by (20a) in (2) as

a(t) =4782T',n=(S,t)/N” =a.| 1 +(arcTn/a rpns) expxZerfe x|, (22a)
where (R =) in (20c) vanishes, ¥ in (20b) is, with the aid of (6), (9), and (21),

=(1+agcon/a TRNs)[(Dt)”/S]exp[V(S)/kT][Sjs"exp( V/kT)R*dR]"!, (22b)
and where

@w=agcn @rens’ (@RcTN* A TRNS) (22¢)

is the steady-state rate of recombination which is controlled by the rate limiting step of reaction ver-
sus transport and which exhibits a form' characteristic of physical mechanisms in series. At high gas
densitie8 N, a rgne < @ ey 8uch that o .~ a qns, the transport rate, At low N, aqgns > @y n 8uch
that ¢.~agcyn. AS ! increases from zero, then

exp xZerfc x-—l-vz’;—x+x2—§%”-x3+... (23)
such that
_ 2 (Df) , -2 -l
a(t=-0)=ap qx|1- = 2RCIN exp[V(S)/kT]{Sj " exp(V/ETIR dr} (24)
T \QpNs
decreases initially from the reaction rate ag-yn AS 1=,
1 _3
exp Perfc x~ 7— Tl ) (25)
such that the long-time dependence is
W) s a. \Sexp|-V(S), kT], . (- -2
alt-=)=qa. {l +(u 1,‘Ns) ("D [sjb exp(V/kT)R™*dR) (26)

which tends eventually to the steady-state rate a. for > (52 D).

16§
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The ion density (20a) tends to the steady-state limit
.-(n,¢-~)=~-exp(-v/m[1-(—"-=—) ’;‘—"’] (21

which at low N is approximately Boltzmann but departs appreciably from Boltzmann at high N (a .

~a gns) particularly in the region of the sink.

The full time dependence in (22a) for a is contained in (22b) for § which, for a pure Coulomb attrac-

tion, varies as

0o ) of) ]

aTRNs
where the scaled time is

T=t/($*/D) (29)

in the units of (S2/D), the time approximately re-
quired for an ion to diffuse from the boundary to
the center of the sink.

In Fig. 1 the time dependence is illustrated for
the recombination rates a{t) resulting from (22)
for various gas densities N (in units of N, the
number density 2.69 x10' cm™ at STP). The
transport rate a pys i8 given by (14) and the re-

action rate arpcn for a fictitious (but representa-

tive) case of ions of equal mass (16 amu) and
mobility 2 em?/V s recombining in an equal
mass gas at 300 °K is obtained from a model -
which yields the exact quasiequilibrium rates®
at low N.

For high N, a{t) decreases initially from
Qpcyny Which is > apys, to its steady-state
1imit which is Q TRNS» i.e., for the assumed ini-
tial Boltzmann distribution, reaction first occurs
spontaneously for the ions within S and then ion

a l L) r Al , L I v
< 1
TS w, e
{ , .

2 n

[ 3 [ ) —
o H : ]
: 9% —
§ 4
gw )
g sk )|

- 1
[ ——— B 1

B b ]

& — l 3 J 1 e ‘ i 1 A ! —J‘
-1 ] [] 2 3 4 3 [}

L0G (Dved

F1Q. 1. Explicit time dependence of recombination
rate a (t) at various gas densities, as indicated in units
of Loschmidt’ s pumber N, (2.69x 10'* cm™? at STP).
Characteristic times (S?/D) for diffusion are also in-
dicated.
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(28)

rtransport is initiated in an attempt to compensate

for the resulting hole in the distribution. For
low N=N, (=1 atm), a linear variation of af¢)
with ¢ is exhibited since the reaction rate agzcry
<« & rpns 18 always the rate limiting step. Thus
the transition from reaction to transport is best
observed for dense gases. Also shown in Fig. 1
are the characteristic time scales (5*/D) for dif-
fusion across a sink of radius S which is com-
pressible with N. This effect could therefore be
detected by modern laser spectroscopic tech-
niques based on rotational or vibrational transi-
tions in molecular ions. The steady-state rates
are of course independent of the initial condition.

In summary, we have presented here the first
exact closed-form analytical solution of the gen-
eralized Debye-Smoluchowski equation for diffu-
sional drift in the presence of a reactive sink or
source. The evolution of the rate of the overall
process for an initial Boltzmann distribution ex-
hibits the interesting phenomenon of control by
reaction to control by transport, and illustrates
the competition between these basic physical
mechanisms as time progresses. This phenom-
enon is directly important to many areas as
fluorescence quenching in solutions and in the
disappearance rate of ionization tracks.
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Ion-Ion Recombination in Dilute and Dense
Plasmas

M. R. FLANNERY
School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332

Abstract

Theory of ion-ion recombination in a gas is provided as a function of gas density N, ion density
N%, and time. An approximate analytical solution to the generalized time-dependent Debye-
Smoluchowski equation for reaction and diffusional drift under general ion-ion field is provided
for an initial Boltzmann distribution of ions. The transition in the time-dependent rates «(f) of re-
combination from reaction to the rate limiting step of reaction and transport is illustrated for various
N, together with the variation of the steady-state limit a with N. The method and results are of basic
significance for situations ranging from medical radiological and biophysics to the rate of disap-
pearance of ionization tracks.

1. Introduction

In this article we outline the first basic theory [1] of the recombination pro-
cess

Xt+Y-"+Z—>[XY]+2Z (1)*

as a function of the density N of the gas Z, of the density N* of the ions X* and
Y~ and of the time ¢. The problem is fairly complex in that various macroscopic
effects such as diffusion, mobility and the recombination sink must be initially
addressed (1] in language of their microscopic coilisional origin, so that various
effects are not twice included (unwittingly) via some particular graft of mac-
roscopic phenomena and microscopic principles. This detailed history has re-
cently been established [1} via the Boltzmann equation and in this paper a
simplified version which correctly blends microscopic and macroscopic effects
is provided and the important results are illustrated. The work is significant also
to chemical reactions in dense gases, to recombination in dilute ionic solutions
and to the time rate of disappearance or diffusion of ionization tracks produced
by a high-energy laser or beam of particles.

2. Recombination Rate

Let the negative ions of density n—(R,t) at time 7 stream across spheres of
radius R each centered at each positive ion distributed N* cm~3. The time-
dependent continuity equation is

on~ C on;
- R, - V cj=-— — oy
or RO=Verj=- ¥ [ > (RE ’)]s (2)

* The square brackets denote that the product may not remain bound.

International Journal of Quantum Chemistry: Quantum Chemistry Symposium 15, 715-727 (1981)
© 1981 by John Wiley & Sons, Inc. CCC0161-3642/81/010715-13801.30
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716 FLANNERY

where the net inward current (number of ions/s across unit area of an R
sphere)

j=D[Vn=(R.t) + n=(R)V(V/KkT)]
= —D exp(=V/kT)(d/dR)[n~ exp(V/kT)IR (3)

arises from diffusional drift of the ions with relative diffusion coefficient D in
the gas Z under an external field of potential ¥(R). The collisional-sink term
is

on- M(R)
[—' (R,E,-,t)] =N Y n;(REn)ks(R) 4)
o1 s f=—V(R)

in terms of the phase-space densities n; (R.E;,t) of R; ions (which form ion pairs
with internal energy E; and fixed internal separation R) and of the collisional
frequencies Nkj; at which an R; ion pair is converted into an Ry jon pair by
collision with the gas bodies Z of density NV {..e., for E; = E/ collisional tran-
sitions). The collisional sink is effective only when the lowest bound level =V
appropriate to fixed separation R lies at or below the level —S of energy E_g
below which the recombination is assumed to be stabilized against any upward
collisional transitions, i.e., =M is max[—V, —S]. Although expression (2) has
been derived [1] from the full Boltzmann equation which describes the evolution
of the phase-space densities n; (R,E;.t) by gas collisions, it can be written im-
mediately from macroscopic principles. The microscopic origin of the macro-
scopic current j of Eq. (3) is the balance of all ineffective ion-neutral collisions
in the absence of the sink—collisions which, in the presence of the sink, over-
subscribe j by the amount in Eq. (3) summed over all states / in Eq. (2) between
the lowest level —V and the far continuum C.

On integrating over the volume of each R sphere,

R
—N+a—°' f [47R2n~(R,1)dR] + 4TRAIN*j(R,1)
(1]

= q3(R)n=(R,ON* (5)
where the sink term which effects recombination has been replaced by (1]

R C -E
ag(R)n‘(R.t)N+=NJ; dR .E_E[N,’(R,Ei.t)fzyk,f(R)

-E
- N}(RsEfJ)kﬁ(R)”, (6)
f==M

the net balance between the collisional rates of downflow and upflow of R ion
pairs past some arbitrary bound level —E of negative energy. In the shells of radii
R and thickness dR, the number density of R; ion pairs (or radial two-particle
correlation function) is

N{(R.E; 1) = (47R2dRIN*n~(R,E;,1) )]

We note for R 2 R, the outermost turning point associated with level —E, that

o s e
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Eq. (6) tends to a constant since collisions with the gas atoms can be assumed
impulsive [2] and change only the internal energy £, of the ion pair and not their
internal separation R. Hence, the flux F.(R) due to recombination,

+

dN
FA(R3) = az(R)n~(RN* = ~ =aN*N~, R2 R (8)
is therefore constant for R = Ry and since the left-hand side of Eq. (5) evolves
to the complete time derivative of the ion density, the overall recombination
coefficient a in Eq. (7) appropriate to asymptotic ion density N~ is there-
fore,

a(t) = ax(Reg)n~(Re t)/N~ 9)

which is determined by Eq. (6) from a knowledge of the phase space ion-pair
densities V; and the collisional rates k,(R) for energy change.

By appeal to the Boltzmann equation for motion of an ion under an external
electric field of intensity E = (—V V), the phase-space densities evolve in phase
space and time as,

Q”_, (Ryvit) + vi - [Vrn 7 (R 1)] + (i) « Vyni (Ry;,t)
m

(ol () o

where v; is the velocity of the ncgative ion at time 7. Here the explicit time rate
of change (dn;/dt) results from the following four mechanisms.

(1) The continuous transport (diffusion) of R; ions across the R sphere is
due to the R-inhomogeneity in #;.

(2) The continuous drift in velocity space due to E produces an acceleration
{eE/m) in each of the n; AR ions initially with velocity points v; within the phasc
element Av;AR, i.e., the R; ions drift in velocity space at the common rate
(eE/m) and are therefore lost from the initial elementary region.

(3) The quasi-discontinuous change (dn;/dt) g, of ions with velocities within
Av; removes ions upon elastic ion-neutral collisions from one velocity element
Av; to another. Replenishment to Ay, is due to similar displacements from other
elements of velocity space. Hence,

[— (V..I)LL = j:o [{nj_'(R‘VfJ)No(R'V;)J) = n; (Ry;,1)No(Ryvo, 1)}

J;, lgﬂ(gv‘ﬁ)dm] dvo, g=(vi—vo) (I1)

where Ng(R,vp,t) is the phase-space density of neutral gas species, and where
the ion-neutral differential cross section at relative velocity g = (v, — vp) for
elastic scattering by angle Y into solid angle d2 is sd€). The € integration is over
that scattering region ' made accessible for the production of final ion and
neutral velocities v and vy, respectively, consistent with initial fixed v; and vo.
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Note, however, that these elastic scattering terms produce energy changes (in-
elastic effects) in the internal energy E; of an ion-pair system.

(4) The loss of ions [dn;/dt]s due to the recombination sink tends to cause
a redistribution in internal energies E; of an ion pair with fixed internal sepa-
ration R.

The elastic term in Eq. (11) produces inelastic transitions (£; — Ey) in an
R; ion pair and on integrating over (1/4)d¥; an expression equivalent to Eq.
(11) can therefore be written as,

on;
—L (R.E;t
[bt (R.E; )]EL

T C
=N| T nARENKR) - n(REN) 5 kyR)| (1)
gy f=—v

where the internal energy E; is 'amu? + V(R).

Because of their continuous development in phase space, mechanisms (1) and
(2) provide the “streaming” or transport terms. We note that the ion density
N£ must be sufficiently low (:510'¢ cm~?) compared with the gas density No
so that the effect of ion-ion direct collisions can be neglected in comparison with
ion-neutral collisions which are only included in Eq. (11). Hence Npin Eq. (11)
can be taken as the Maxwell-Boltzmann distribution such that Eq. (10) with
Egs. (11) and (4) is then the “linear™ Boltzmann equation.

The recombination rate a(¢) is therefore, in principle, determined as a general
function of gas density N, ion density N%, and time from Eqgs. (9) and (6) via
the time-dependent solutions of Eq. (10) for the phase-space densities. The in-
teraction V(R) between the ions can no longer be assumed ab initio to be pure
Coulomb as N#* is raised. It is the appropriate solution of Poisson’s equation

o2y = 4re?

p [n*(R.1) = n=(R.1)] (13)

where the local positive and negative ion densities are
n*(R) = 4x | R0k (14)
and where € is the dielectric constant of the gas Z. In the reference frame of the
positive ion, n*(R,t) is simply the Boltzmann distribution
nt(R,1) = N* exp(V/kT) (s

Recombination is therefore fully determined by the solutions of Boltzmann'’s
equation (10), Poisson’s equation (13), and the kinetic equation {6) coupled
together. Various theoretical procedures have been already proposed [1] for the
solution of Boltzmann's equation (10) for the phase-space densities.
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3. The Generalized Debye-Smoluchowski Equation: Transport and Reaction
Rates

Rather than solve Boltzmann’s equation (10) directly, assume that the sink
term, Eq. (4) in Eq. (2), can be replaced by a partially absorbing sphere of radius
S(=Rg), an assumption suggested by the coastancy at R 2 Ry of the micro-
scopic kinetic expression (6) for the loss rate, such that Eq. (2) is in effect
equivalent to the generalized Debye-Smoluchowski equation,

on~ 1 o
ot (R1) + R2OR

where I'; is the speed of reaction (via three-body collisions) for ions after being
brought to S by the diffusional-drift current,

[RZ(RD)]) =T~ (R,DHHR — S) (16)

J(R,t) = D exp(—V/kT) biR [n(R,t) exp(V/kT)] (17)

On integrating Eq. (16) over 4rR2dR, then the continuous-source result is
identical with Eq. (8) provided

J(S1) =T (S.1) (18)
such that

a3(S) = 4xS2T, (19)

thereby confirming that the strength I'; of the sink in Eq. (16) is the speed of
reaction within S. As I'y — «, then

n=(S,)=0 (20)

for an instantaneous-reactive sink. Note that Eq. (16) is equivalent to the ho-
mogeneous equation (16) with its right-hand side set equal to zero solved subject
to a3(S)n=(S,t) equal to a ()N,

Equation (16) is of basic significance not only to ion-ion recombination and
chemical reactions in a dense medium but also to medical radiology. diffusion
and field controlled reactions in metabolizing systems (as enzyme-substrate
reactions in a cell [3], and diffusion across a membrane. While an exact time-
dependent solution to Eq. (16) can be obtained [3] for the field-free (V = 0) case,
no exact solution has yet been determined for general ¥ although a large body
of literature exists on various approximate techniques [4] and numerical solutions
[5] for the Coulomb case. We provide here an analytical solution of Eq. (16)
for general V(R), subject to the condition that n~(R.1 = 0) is initially prepared
as the Boltzmann distribution, Eq. (15).

The following approximate solution is based on the novel transformation from
R to the variable

dR|-!

= dR [R\2
R= v — . —=|7] e - 2
U; explV(R)/KT] R} ' dR (R) exp(V/kT) b

a transformation no. . ithout its physical significance. It is related [ 1] to the
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probability P, that an Ry ion pair will further contract by diffusion under V,
in the presence of an instantaneous sink at S (or else expand by diffusion ex-
pansion against V to infinite internal separation).
Let,
ny(R,t) = n(R,t) exp(V/kT) (22)

such that Eq. (16) with Eq. (21) reduces to

don,(Rt) D d [, on,(Rt)
— == — |R2 = 23
ot R2QR [ OR 23)
where the transformed diffusion coefficient (cm2s~!) is
. dR)2
D=D|— 24
- (24)

The form of this equation is, in the transformed R representation, identical
with that for the field-free case in the original R representation. Accordingly,
introduce scaled quantities,

F=(R/S)— 1,7 = DyS2, n’ = (R/S) n,(R,1) (25)
such that Eq. (23) under assumption of constant D reduces to
on' o?

37 (F,7) = 52 T 1) (26)

which can be solved by the method of Laplace transformation which incorporates
the initial condition.

The full solution of Eq. (16) appropriate to spontaneous reaction Eq. (20)
is therefore, after some analysis,

S (I.Q - S) dR
(s) = N-— —V/kT - ~ Iy
nSRt)y=N exp( /k ) [l = erfc [ 2\/_; -)]] (27)

The recombination rate then reduces to

_ . - S2exp[—V(S)/kT]
aS)(t) = 4nS%(S,1)/N~ = arg { 1+ S(rDn)n2 (28)
where the steady-state transport rate
arr = 475D = 4xDR,/P(S) (29)
with
< - dR
P(S)=R./S=R. f exp(V/kT) 25 (30)
s R?

in terms of R, the natural length (e2/k T). Under condition of equilibrium with
the field when the Einstein relation written as (DR, = Ke) holds, then for a
Coulombic attraction, the steady-state solution is,

afl = 4wKe/[1 — exp(~R,/S)] (31)




L D)

ww

P

WP

ION-ION RECOMBINATION 721

as previously obtained by Bates [6] in a steady-state analysis of an instantaneous
sink.

The boundary condition Eq. (18) for finite reaction under a field is,
T'(S)n=(S.1) = D exp[—V(S)/kT] ls% {n(R,1) exp( V/kT)]} (32)

which yields, in the transformed representation of Eq. (21),

dn,

D
%50 = R ‘dk s (33)

where the transformed speed of reaction is
I' = I' (dR/dR) (34)

Hence, after exercising due care, the full timc-dependent solution obtained
from the Laplace transformation of Eq. (26) subject to the initial Boltzmann
distribution is given by, for a general interaction

n~(Rt) = N~ exp(—~V/kT) [l + ({?—)(E_)
dp/\R

X lexp(ZQ)’() expx? erfe(x + f-l) — erfc (-1}‘ (35a)

where

- ~ |/2 - -
X(1) = (1 + %) LD‘SL = (1 + %l)l/z(g)l/zgexpV(S)/kT (35b)
D

apl \s?¥} S
where,
Q1) = (R = §)2(D1)YV2=(R - §)/2(D1)'\ (35¢)
since D is assumed constant in eq. (24) and where
&= a‘:f; - (35d)
in terms of
a3 = 4nxS2T; ap = 4xSD (35¢)

The ratio of @3, the transformed reaction rate to &p, the transformed transport
rate in Eq. (35) is therefore

Q3 _ asexp[-V(S)/kT)] _ arn
ap aTr aTR

(36)

where agn is used to denote the recombination rate that would pertain provided

a Boltzmann distribution of ions were maintained as at low gas densities, i.e.,
apn(S) = 47S2T; exp[=V(S)/kT] (X))

from Eqs. (19) and (36) such that Eq. (37) is the rate of reaction within S.
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The full time-dependent recombination rate now follows from Eq. (35a)
as,

a(®)=an~ (SN~ =« Il + (9‘_&'}4_ expx? erfc )’(] (38a)
OTR

where (R = S) in Eq. (35¢) vanishes, where ¥ in Eq. (35b) is, with the aid of
Egs. (21), (24) and (36),

% = (1+“RN o0V exp[ V(S)/kT)
ATR S
o —l
x[s f exp(V/kT)R-2 dR} (38b)
S
and where

_ __OGRNOTR

38
(arN + atg) (38<)

is steady-state rate of recombination. Hence the radiation boundary condition
(33) can be written as

(o) = (ofamn)| ),

which incorporates the full absorption (agn >> d) and vanishing absorption («
> agrn) conditions appropriate to diffusion-controlled and reaction-controlled
processes respectively.

Thus the steady-state recombination rate a is controlled by the rate-limiting
step of reaction versus transport. At high gas densities N,arg << arn such that
a — ag the transport rate. At low NV,arr > agrn such that a — agrn.

As 1 increases from zero, then

2 4
2erfex = 1 ——=x+x2- 34+, 9
expx? erfcx X=X (39)
such that,
1/2
a(t — 0) = apn |1 — (“"N) o~ exp[V(S)/kT]
aTR S

= _I
x[S J; exp(V/kT)R‘zdr] ] (40)

decreases initially from the reaction rate agn. As t ==, then

2erfcx — ———-4-—— ..
expx? erfcx ( e ) (41)
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such that the long-time dependence is

_ _a \ S exp[—V(S)/kT]
a(t )= a{l + (am) (D)2

x[s f; exp(V/kr)R—zdR“ (42)

which tends eventually to the steady-state rate a for t »> (S2/D).

The transient rates, Eqs. (40) and (42), for short and long intervals of time
are best observed at high gas densities when agrn >> aTr = a, respectively. The
full transient densities (35) and rates (37) are of basic significance to all diffu-
sion-drift phenomena in gases or dilute solutions, as ion-ion, ion-atom, and
atom-atom recombination in dense gases, or as coagulation of colloids in ionic
solutions and in general to chemical reactions in dense gases.

The steady-state ion density from Eq. (33a) is

_a P(R)
atgr P(S)

The full time dependence in Eq. (38a) for « is contained in Eq. (38b) for x
which, for a pure Coulomb attraction, varies as

n~ (Rt -» w) =N~ exp(—V/kT) [] - (43)

x(r) = (1 + m) 71/2 (&)[exp(R,/S) - 1] (44)
ATR S

where the scaled time is
T =1/(S¥D) (45)

in units of (S$%/D), the time approximately required for an ion to diffuse from
the boundary to the center of the sink.

4. Simple Model for Reaction Rate

Assume that a reaction occurs following strong collisions between gas atoms
and ion pairs with internal separations R; < R;. The trapping radii appropriate
to interaction V is then the root of [7]

V(R + \;)) — V(R)) = %kT/é; (46)

where A; is the mean free path of the ion i(=1,2) in the gas Z and where §; is
a collision parameter so chosen that the deduced reaction rate reproduces in the
limit of low N results [8] obtained from the quasiequilibrium microscopic
treatment of ion-ion recombination at low N. Condition (46) originates from
the requirement that an ion pair upon collision with Z is rendered incapable of
expanding outwards from R; to R; + A where the next collision would occur.
It is a generalization of Natanson's condition {9] and as A — =, Eq. (46) reduces
to Thomson’s criterion [10).
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On recalling that each species of ion i have different mean free paths A; in
the gas Z and different sink radii R;, the model for the rate agn of reaction
within R is therefore generalized from Eq. (37) to give {7}

arnN(R1LRy) = T[RIW(X|)C\E| + RIW(X,)CHE,
— RUW(Y)W(Y)G](v1) (47a)

where (r)3) is some averaged ion-ion transport speed of approach, and where
the probability for an ion i-neutral Z collision for ion pairs with internal sepa-
ration R < R; increases with gas density to unity as

W(X;) = 1= (hXDI[1 —exp[~2X)(1 + 2X)]. X, = R/\; (47b)
for a straight line trajectory. The factor
E; = exp[—V(R; + N\;)/kT] == exp[V(R)/kT] exp(—=3/26;,) (47¢)

acknowledgments the Boltzmann enhancement in the ion number density due
to the field at (R, + A;) at which the last ineffective ion-neutral collision occurs
just before the ion enters the recombination sink within R;. The factor

ool S o) oo

acknowledges the focusing effect of the interaction on the assumed straight-line
ion-ion trajectory between (R; + A;) and R;. The minimum of R, and R, is Ry
such that W(Y,;)W(Y,) with Y; = Rp/A,; is the probability of simultaneous
ion-neutral collisions within Ry, a probability counted twice in the first two
terms of Eq. (47a). Simple geometric arguments show that G in Eq. (47a) is
either CE, or C1,E, depending on whether Ry, is R or R, respectively.

5. Interaction V

On inserting the steady-state ion density of Eq. (43) into Eq. (13), Poisson’s
equation become

12,0
=3k IR oR(V/kT)I (ZRz)lexp(V/kT)

[ (OITR)P(RE) exp(— V/kT)] R 2 Rg (48)

where the “screening” distance is
Rs = (BTN%R,[e)~1/2 (49)

and where R is the sink radius S of Sec. 3. An analogous time-dependent
equation follow. by inserting n~(R.¢t) of Eq. (35a) into Poisson’s equation, Eq.
(13).

Hence the | }term of Eq. (48) contains an explicit dependance on V(R) via
P(R) of Eq. (30) and implicit and explicit dependances via atg of Eq. (29) and
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apn ¢§ EqQ. (41a) in Eq. (38¢). The interaction must therefore be solved from
Eq. (48) self-cansistently with the recombination. ;
l Atlow N, thel {term of Eq. (48) tends to unity at all R, while, at high NV, it
increases from zero, at R =~ R, to unity at asymptotic R. For no plasma sheating
{Rs — =), the interaction V is Coulombic.
When ¥V « kT, the exponentials in Eq. (48) may be linearized to yield the
solution

(a/ay)e?

0
2R (50}

2
V(R) = —";(l - 2—:;) exp(—R/Rs) —

where

ay = 4nDR, = 47w Ke (51)

is the Langevin transport rate. Direct numerical integration of Eq. (48) which
may be replaced by equivalent three coupled first-order differential equations
shows that Eq. (50) remains a highly accurate solution for R Z 0.1 R,. When
a <« apy as at vanishing N, Eq. (50) yields
2
VOH(R) = - = exp(=R/Rs) (52)
the Debye-Hiickel interaction (DH). The recent Monte-Carlo simulations [12]
based on this interaction DH are therefore invalid [11, 13] for the range of gas
densities V covered. The interaction of Eq. (52) is valid only in the limit of
vanishing gas density, i.e., as N — 0 when the rate « of recombination is van-
ishingly small compared to the rate of ion transport. When « = aryy as at high
gas densities N, Eq.(50) is Coulombic (C) at R = Rg which is much smaller
than Rs = 1.5R, appropriate to N* ~ 10'4 cm~3, and Eq. (50) tends to the
mean of C and DH at asymptotic R which is self-consistent with the choice a
= y.

-~

6. Transient and Steady-State Rates

In Figure 1 is illustrated the time-dependence of the recombination rates c(r)
l obtained from Eq. (38) for various gas densities NV (in units of N, the number
density 2.69 X 10'? cm~3 at STP). The transport rate arg is given by Eq. (31)
and the reaction rate arn is obtained from Eq. (47) for a fictitious (but repre-
sentative) case of ions of equal mass (16 amu) and mobility 2cm2 V=!s~! re-
combining in an equal mass gas (for which 8; = 0.6 [7]) at 300 K.
For high N,a(t) decreases initially from agn, which is > ar. 10 its steady-
— state limit which is ayg. i.e., for the assumed initial Boltzmann distribution,
‘ reaction first occurs for the ions within S and then ion transport begins in an
attempt to compensate for the resulting hole in the distribution. For low N S
N, (=1 atm.), a linear variation of «(¢) with 1 is exhibited since the reaction
rate arn << atgr. Thus the transition from reaction to transport is best observed
- for dense gases. Here the large reaction rates originate from the greatly enhanced
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Figure 1. Explicit time dependence of recombination rate a(r) at various gas densities, as
indicated in units of Loschmidt’s number NV, (2.69 X 10" cm~3 at sTP). Characteristic times
(52/D) for diffusion are also indicated (from ref. 1).

Boltzmann factors E; in Eq. (47a) which more than offsets the inherent reduction
in the trapping radii R;. Also shown in Figure 1 are tiie characteristic time scales
(S?/D) for diffusion across a sink of radius S which from Eq. (46) is compressible
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Figure 2. Recombination rate coefficient agem? s=') at 300 K for (Kr* - F~) in rare gases.
as a function of gas density ¥ (in units of Loschmidt's number density N, = 2.69 X 10%*
at STP). (—) Present treatment with experimental mobilities: (X.Q) universal Monte-Carlo
(hard sphere) plot (ref. 14); (O) Monte-Carlo (polarization) results (ref. 12).
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with V. This effect could therefore be detected by modern laser spectroscopic
techniques based on rotational or vibrational transitions in molecular ions. The
steady-state rates are independent of the initial condition.

In Figure 2 is illustrated the variation of the steady-state rates a(t — «) for
the realistic case

Kr* + F- + Rg — KrF* + Rg (53)

at 300 K with gas density /V of various gases Rg = Ne, Ar, Kr, Xe. Agreement
with Monte-Carlo computer simulations [12, 14] is very good for low N+, Figure
2 essentially shows the variation with N of the asymptotic limits of Figure 1.

Both figures therefore provide a comprehensive account of the recombination
rate « as a function of time, and gas density. The present theory is also significant
in other situations involving the rate of disappearance of a dense ionization track
produced by a directed high energy beam of particles or radiation.

Acknowledgment

This research is sponsored by the U.S. Air Force Office of Scientific Research,
under Grant No. AFOSR-80-0055.

Bibliography

[1] M.R. Flannery, Phil. Trans. Roy. Soc. A, to appear.
[2] M. R. Flannery, in Case Studies in Atomic Physics, E. W. McDaniel and M. R. C. McDowell,
Eds. (North Holland, Amsterdam, 1972), vol. 2, p. 1.
(3] A.T.Reid, Arch. Biochem. Biophys. 43, 416 (1952).
[4] A. Mozumder, J. Chem. Phys. 48, 1659 (1968); G. C. Abell and A. Mozumder, J. Chem. Phys.
56, 4079 (1972); G. C. Abell, A. Mozumder, and J. L. Magee, J. Chem. Phys. 56, 5422 (1972):
J. L. Magee and A. B. Tayler, J. Chem. Phys. 86, 306] (1972); K. M. Hong and J. Noolandi,
J. Chem. Phys. 68, 5163 (1978).
[5] J. H. Freed and J. B. Pedersen, Adv. Magn. Reson. 8,1 (1976).
[6] D.R. Bates, J. Phys. B. 8, 2722 (1975).
[7] M. R. Flannery, Chem. Phys. Lett. 56, 143 (1978).
[8] D.R. Batesand M. R. Flannery. Proc. Roy. Soc. Lond. A 302, 367 (1968); M. R. Flannery,
J. Phys. B. 13, 3649 (1980); 14,915 (1981).
[9] G. L. Natanson, Sov. Phys. Tech. Phys. 4, 1263 (1959).
[10} J. J. Thomson, Phil. Mag. 47, 337 (1924).
[11] D.R. Bates, J. Phys. B. 14, L115 (1981).
[12] W.L.Morgan, B. L. Whitten, and J. N. Bardsley, Phys. Lett. 45, 2021 (1980).
[13] M. R. Flannery, Chem. Phys. Lett. 80, 541 (1981).
[14]) D. R. Bates, Chem. Phys. Lett. 75, 409 (1980).

Received June 9, 1981




Appendix F
Theory of Ion-Ion Recombination, Phil. Trans. Roy. Soc. (London) A 304,

447-497 (1982).

10




Phil. Trans. R, Soc. Lond. A 304, 447-497 (1982) [ 447 ]
Printed in Great Britain

.n THEORY OF ION-ION RECOMBINATION

By M. R. FLANNERY
School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, U.S.A.

L (Communicated by Sir David Bates, F.R.S. ~ Received 11 March 1981)
: CONTENTS
; PAGE
1. INTRODUCTION 448
1.1. Physical concepts 449
1.2. Physical concepts in the present theory 451
1.3. Notation 452
"' i 2. THEORY OF ION—ION RECOMBINATION AS A FUNCTION OF NEUTRAL GAS DENSITY 454
2.1. Basic equation for ion-pair phase density 454
- 2.2. Recombination coefficient a from derived equations of continuity, momentum
and flux 459
2.3. Steady-state solution 463
Lo 2.4. Partially absorbing and fully absorbing sinks: transport and reaction rates 465
l 2.5. Analytical solution of the time-dependent generalized Debye~Smoluchowski
equation 469
3. ‘GENERALIZED QUASI-EQUILIBRJUM’ STEADY-STATE METHOD FOR THE REACTION AND
TRANSPORT RATES 478
B 4. THEORY OF ION—ION RECOMBINATION AS A FUNCTION OF ION DENSITY 481
4.1. General theory : 481
4.2. Simplified method for reaction rate 483
4.3. Results for [(Kr* —F™) + M] recombination 485
5. THEORETICAL METHODS FOR SOLUTION OF THE PHASE DENSITY 486
- 5.1. ‘Separable-equations’ method 487
N 5.2. ‘Distribution in length between collisions’ method: the frequency equation 490
6. SUMMARY 493
. APPENDIX A. ANALOGY WITH CONDUCTING SPHERE 494
o
APPENDIX B. THE PECULIAR MEAN FREE PATH 495
REFERENCES 496
| A new and basic theory of ion-ion recombination as a function of gas density N is

developed from basic microscopic principles. A key equation for the distribution in
phase space of ion pairs is derived together with an expression for the resulting rate «

Vol. 304. A. 1487 32 [Published 30 April 1982

L- s g . . —— . —




448 M.R.FLANNERY

of recombination. Further development of the theory leads to interesting insights into
the full variation with N of «a, which is shown to yield the correct limits at low and
high N. The recombination rate « is determined by the limiting step of the rate a,, for
ion rcaction and of the rate ay. for ion transport to the reaction zone. An analytical
solution of the time-dependent Debye-Smoluchowski equation, which is a natural
consequence of this theory, is provided for transport-reaction under a general inter-
action V, for an instantaneous reaction (ary > @) and for a finite rate (arn * ayr) of
reaction within a kinetic sink rendered compressible by variation of gas density.
Expressions for the transient recombination rates a(¢) are then derived, and are
illustrated. The exhibited time dependence lends itself to eventual experimental verifi-
cation at high V.

A theory that investigates the variation of a with ion density Nt is also developed.
Here the ion-1on interaction ¥ can no longer be assumed ab initio to be pure coulomb but
is solved self-consistently with the recombination. Recombination rates for various
systems are illustrated as a function of ¥ by a simplified method for the reaction rate.
Finally, two theoretical procedures are proposed for the solution of the general phase-
space ion distributions.

1. INTRODUCTION

Ever since the pioneering developments by Langevin (1903) of ion—ion recombination at high
gas densities N, and by Thomson (1924) of the low density limit, theorists have sought a basic
theory to link the linear three-body (Thomson) region to the nonlinear gas density region with
the aim of eventual connection to the high density (Langevin) region in which the combined
macroscopic effects of mobility (Langevin 1go3) and of diffusion (Harper 1932, 1935) control
events. Natanson (1959), by generalization of a method of Fuks (1958) on evaporation of water
droplets in a gaseous medium, provided some insight to this link, although his approach remains
phenomenological in the spirit of th< approaches of both Langevin and Thomson. The concept
of a trapping radius was invoked in all three studies and was so chosen by Thomson and Natanson
that a single strong ion—neutral collision for ion pairs with separations within this radius produced
recombination. Mechanisms resulting in mobility or diffusion, or both, were treated (if at all)
as macroscopic.

These phenomenological approaches masked the essential theoretical problem, which is
complex and difficult in that the macroscopic effects and recombination sinks require address in
language of their basic microscopic origins. Any simplifications introduced through concepts of
mobility, diffusion and trapping radii for description of macroscopic phenomena without
recourse to their microscopic origin are inherently theoretically unsound, unless the full and
detailed phase-space history of an ion pair has first been established, with all macroscopic charac-
teristics being the effect of, rather than the cause of, such microscopic behaviour.

Suffice it to note this history has, in general, not been established, except in the low-density
limit when diffusion-mobility effects are sufficiently fast to support equilibrium such that recom-
bination is limited by reaction alone, as opposed to transport. Bates & Moffett (1966) and Bates &
Flannery (1968) succceded in developing the first rigorous theoretical account of recombination-
reaction based on microscopic energy-change principles; they then established by quasi-
equilibrium kinetics the essential development in internal energy E of ion pairs recombining
solely by reaction. Bates & Menda$ (1978a), by distinguishing between expanding and con-
tracting ion pairs, have proposed an intcresting extension of the quasi-equilibrium method into
the nonlinear region and have shown a variation of the recombination coefficient @ with gas
density N, consistent with the initial nonlinear ascent with N as given in the phenomenological
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treatment of Thomson (1924). However, at pressures greater than 1 atmt (at 0 °C), the Thomson
model predicts saturation in a, and fails. Coupling with the macroscopic effect of mobility, i.c.
the diminishing effect of accelerations produced between collisions by the mutual ion-ion
electrostatic field, is absent in both treatments. As will be shown here, the Thomson model is a
model for the reaction rate and neglects the rate of ion transport, an assumption valid only at
low . Bates (1975) generalized the Harper-Langevin result by including (macroscopically) both
diffusion and drift in the ion-transport rate which in the limit of high N is the rate of recombi-
nation since reaction proceeds infinitely fast.

The above references reflect the key pivotal theoretical developments, until now, that have
contributed to the basic understanding of ion-ion recombination in a gas.

Since the overall theoretical problem is so complex and difficult, resort in the meantime has
been made to procedures (Flannery 1978, Flannery & Yang 19784, 5, Wadehra & Bardsley 1978,
Flannery 1976) that arc all essentially modifications of Natanson’s expression (based on the strong
collision concept) or else to Monte-Carlo computer simulations (Bates 19804, §; Bates & Menda§
19785, Bardsley & Wadehra 1980, Morgan et al. 1980) which, although they produce numerical
coefficients a, do not deepen theoretical understanding of the basic issues involved. However, the
Monte-Carlo results may exhibit special characteristics requiring further theoretical explanation
(as in Bates 1980c¢). The renewed activity in recombination has been largely prompted by
continuing interest in the overall problem, and in some measure by the key role (cf. Flannery
1979) of ion-ion recombination in populating the upper molecular states of rare gas-halide
lasers which operate not only at high gas pressures (3-10 atm) but also at high ion-densities
1012 < Nt < 101 cm-3. This is a region for which laboratory experiments of benchmark quality
are as yet not forthcoming because of severe problems (even at low Nz, but especially at inter-
mediate and high N).

The aim of this paper is to present the first basic theoretical account of a classical problem, i.e.
the determination of the recombination rate « of

X+*+Y-+2Z > [XY]+Z (1.1)

as a function both of gas density and of ion density. The first account of the explicit variation
of a(t) with time will also be provided. To provide some insight, it is worthwhile to review
the essential underlying phenomenological features of ion—ion recombination within a modern
perspective.

1.1, Physical concepts

At high gas densitics N, the relative velocity v of the positive and negative ions X+ and Y-,
labelled 1 and 2, respectively, is governed by vy, the drift velocity (K, + K,)E acquired from the
1-2 mutual electrostatic field of intensity E by the ions with mobilities X, , in the neutral gas Z,
labelled 3. The ion-neutral collision frequency (v/A,) in terms of the mean free path A, of cither
ion 7 is very high and v is therefore in equilibrium with the field. The constant steady-state g is
achieved as the balance between accelerations in the field direction between i-3 collisions, and
decelerations during i-3 collisions. The net (inward) flux Fi;* (cm—3s-1) of negative ions crossing
sphercs of radii Ry centred at each positive ion, distributed with frequency N*+cm=3, is about
4nR% va N*N- so that, under the assumption that all ion pairs with separations R less than Ry

t atm = 101325 Pa.

32-2
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are assured of eventual recombination, the recombination rate at high gas densities N is equal to
the rate of (drift) transport:

t dNt  F,T
TNTN-Tdt T N+N-
Tl}is is the Langevin result, which decreases as N-1. The rate (1.2) is the rate a,r of ionic transport
in the absence of diffusion, which is appropriate only at asymptotic R, and is valid when the rate
arnof reaction (by three-body collisions within Ry ) is much faster than ay., as at high N where the
large number of third bodies ensures instant deactivation of the ion pairs. The above method
(fortuitously) provides the correct result only for a pure Coulomb attraction; for a general
interaction, the full diffusional-drift equation (§ 2.4) must be solved.

At low gas densities N, ion-neutral collision frequencies are vanishingly small, so the relative
1-2 approach velocity v becomes much higher than the thermal velocity, and a large fraction of
the close ion—ion 1, 2 encounters (within Rx) do not result in mutual neatralization by electron
transfer. Of the velocity-changing i-3 collisions, the ones effective for recombination are those
that occur for 1-2 separations R < Ry where the electrostatic field is sufficiently strong for
trapping. Since no angular momentum barrier at positive energies exists for pure coulomb
attraction, trapping involves only those ion pairs with internal energy rendered negative by i~3
collisions. If it is assumed that recombination results from a single strong -3 collision (i = 1, 2)
within Ry centred at the other ion, then for low N, « increases linearly with N as

1o = Keg(Ry) ({0)/2;+(0)/Ay) = $nR% Nog (v), (1.3)
in terms of some averaged collision frequency (v) /A, and of K, the equilibrium constant (4nR3)
averaged over all energies for formation of R-ion pairs with internal separations R < Ry. The
sum of the diffusion cross sections for each -3 encounter is 04. For a suitable choice of the trapping
radius Ry, (1.3) agrees with the low density limit of Thomson’s result.

As Nis raised, the ion-sink strength represented by ay, increases to such an extent that its effect
on the number density Nj(R) of R-ion pairs becomes important and must be coupled to the
solution of M) though the diffusion—drift equation thereby resulting in an overall increase with N
less than linear (see §2.3) and in eventual decrease, i.e. the rate of reaction increases, becomes
comparable with, and eventually becomes much faster than the transport rate as N is increased.
In contrast, however, Thomson assumed that as N is raised the probability P,(Ry/A,) of effectivet
ion-neutral ccllisions, for ion pairs with R < Ry, eventually increased to unity as

B(X) = W(X,) + W(X,) - W(X,) W(X,), X;=Rg/A; (1.4)
where the individual ion-neutral collision probability is (Loeb 1955)
$X(1-3X+3X2-}1X3+..), low N,
1, high N,
which yields (1.3) for N low, but which leads to a defective result at high N (althoughThomson’s .
survival-diffusion concept is essentially correct). The extension by Bates & Menda$ (19784)
into the nonlinear region is consistent with the initial nonlincar N-variation of (1.5). The
Thomson rate isonly the reaction rate, while Bates & Menda$ introduced the additional transport

mechanism of diffusion.
The failure of the Thomson model at high N is due both to the neglect within Ry of the
decrcasing effect of accelerations produced by the ion-ion field between frequent ion~neutral

an = = 4ne( K, + K,), (1.2)

W(X)=l—(1/2X=)[l—exp(—2X)(l+2X)]—>[ (1.5)

t In the sense of promoting the reaction phase of the recombination.
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collisions, a mobility effect required for thermodynamic equilibrium in the absence of sources
and sinks within Ry, and to the explicit neglect of ion transport by both diffusion and drift under
V outside the reaction Rr-sphere. Both neglected effects, which originate with the transport of
ions in phase space under a field, are a natural consequence of the basic theory (§2). Thus the
Thomson rate is essentially the rate of reaction arn within an incompressible field-free sink S of
ions brought to § not by ion transport (which is ignored) but by their thermal energy. Within
the Py-factor of (1.4), diffusion is acknowledged only within the field-free sink through the
decrease in survival rate of the ions towards increasingly effective collisions with an increasingly
dense gas. The survival-collision probability P, remains therefore limited to unity at sufficiently
high N (infinitely large collision probability for ions with infinitesimal survival probability).

it will subsequently become apparent that recombination occurs by reaction, at rate ary, of
ion pairs (via three-body effective collisions) brought together by ion net transport at a rate ay,
such that the rate a of recombination is determined by the rate-limiting step, i.e. by

o = arn@trf(®rn + Atr) (1.6a)
where @rn ~ (RR%) Py(X) exp[ — V(Ry) [k T) (v, (1.64)

is the rate of reaction within R, and
Atr = 41tD/Jm exp (KV/De) R-3dR = 4nKe[l —exp (—e2/RpkT)] ! (1.6¢)
Ry

is the transport rate in terms of the coefficients D = K(kT/e) and KX for relative diffusion and
mobility respectively and of the integral which is related to the probability for diffusional escape
in the presence of an instantaneous sink at Ry and an attractive interaction V which is taken as
Coulomb. In this sense, Langevin and Thomson focused on each of the essential components
(transport and reaction, respectively) required for a complete theory of recomt:nation. Each
component provides the correct limit: i.e. at high N when the reaction is instantaneous in com-
parison with transport (arn > &.r), the overall rate a from (1.6a) reduces to (1.6¢) while atlow N,
when the ionic transport is faster than the reaction (ar > arn), (1.64a) reduces to (1.65).

The reaction rate arx is the recombination rate that would pertain (§ 2) provided a Boltzmann
distribution of ions were maintained, a situation that results in no net diffusional drift.

Bates & Flannery (1969) have already noted that Natanson’s expression, designed to cover all
N, could essentially be written as (1.64). By analogy with the behaviour of a steady current
through an electrical network of two capacitances in scries, Bates (1974) expressed a ‘scries’
rate such as (1.6a) in terms of a theorem. It will subsequently become apparent that the full
microscopic theory of ion-ion recombination places (1.64) on a firm theoretical foundation
and yields remarkable analogies to many macroscopic areas of physics (fluid dynamics, cvapora-
tion theory, coagulation of colloids, diffusion in a ficld, chemical reactions in dense gases,
fluorescence quenching, clectrostatics {cf. Appendix A), ctc.) and that thercin lics partly its
fascination.

1.2. Physical concepts in the present theory

The present theory allows for the full evolution of the density of ion pairs in phase space by
effective and ineffectivet microscopic collisions, by inward and outward diffusion due respec-
tively to the presence of the recombination sink (at small and intermediate R) and to the
diffusional escape reaction to the effect of inward drift (at larger R), and by the accelerations

t In the sense that these collisions promote thermodynamic equilibrium by ion transport.
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produced by mutual electrostatic ion-ion fields between ion-neutral collisions in an increasingly
dense medium. In so doing, the macroscopic effects of diffusion and mobility are properly traced
from their microscopic origins which in turn are responsible for the recombination sink, so that
various physical mechanisms are not twice included (unwittingly) through some particular
graftof macroscopic phenomena and microscopic mechanisms. Inlow density treatments (Bates &
Moffett 1966, Bates & Flannery 1968), the acceleration due to the ion-ion interaction is included
correctly; but as the gas density is raised, the diminishing effect of this acceleration due to
increased collision frequencies must be properly acknowledged. Thermal equilibrium at high gas
densities, without the effect of sinks, sources or chemical reactions, is achieved as a balance
between the accelerations so produced by the field between collisions (or by macroscopic inward
mobility) and the outward diffusi~n .  ions due to the R-inhomogeneity produced by the
ion—ion interaction. Presence of a s.uk naturally implies additional inward diffusion, which
becomes effective at smaller and intermeda: te R.

1.3. Nolation

The equation in the text in which the symbol is first precisely defined is given in parentheses.

x recombination rate (cm3s-!), (2.51)

Arn, Alo reaction rate (cm3s~!) or recombination rate appropriate to a Boltzmann
distribution of ions, recombination rate at low gas densities, (2.61)

oty armexp[V(R)/kT), (2.44), such that a3(R)n (R) is frequency of reaction
within R-sphere.

an Langevin rate (4rnKe), (1.2)

a¢(R) transport rate [an{R, [ exp (V/kT) R-2dR}-1), (2.63)

Ani a1:(Ry); recombination rate at high gas density, (2.63)

I3(R), I'(R) speed of reaction of R-ion pairs, (2.82)

C all states of ion pairs in the energy continuum, (2.5)

D diffusion tensor, (2.37)

D relative diffusion coefficient (cm?s-!) of positive and negative ions, (2.43)

Dy diffusion coefficient in the presence of a sink, (5.49)

2 diffusion drift operator, (2.464a)

) collision parameter, (4.15)

E electric field intensity, (2.3)

-E energy of arbitrary bound level (— E) of ion pair, (2.474a)

E i, E_,E_y cnergy of bound levels —S, -V, and —M of ion pair such that E_y =
max [E_y, E_J], (2.49)

E; internal energy of the ion pair in state i

] electronic charge (4.80324 x 10-"%e.s.u)

F inward flux (negative ions s=1) across a sphere centred at a positive ion, (2.69)

Fy(vi) do Maxwellian distribution of speeds, (2.13)

& & ion-neutral relative speed, and velocity, (2.4)

J(R, 1) current (negative ions cm=2s-1) across an R-sphere centred at a positive ion,
(2.456)

k Boltzmann constant (1.38066 x 10-2 JK-1)

K relative mobility (cm? Stat V-15-1) of positive and negative ions, (2.38), (2.43)
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collisional rate coefficient (cm3s-1) for conversion of R-ion pairs (with internal
separation R and internal cnergy Ei) to Rp-ion pairs by collision with a third
body (gas atom), (2.6)

peculiar path length of ions with speed v; in absence of recombination sink,
(5.34, 5.35)

peculiar path length of ions in recombination process, (5.31)

mean free path averaged over all speeds of ions in equilibrium, (1.3)

bound level of energy £ _y; such that E_y = max [E_y(R), E_J}, (2.11)

gas bulk density (cm~—3}, (1.3)

gas density (2.69 x 10 cm—3) at s.t.p. (Loschmidt’s number), after (2.128)
ion bulk density (cm-3), (1.2)

phase-space gas density (¢cm~?/{cms™1)3), i.c. gas density per unit do,-interval,
(2.4)

configuration-space gas density (cm~?) f N,(R, vy, t) do,, (2.34)

phase-space density of negative ions, (2.2), (2.3)

4nvini(R, v5,¢) (cm=3/(cms-1)), density of negative ions per unit speed-interval
about v, (2.8)

Maxwell-Boltzmann ion density per unit dv;-interval, (2.13)

configuration-space negative ion density (cm=2) fm(R, v;,¢) do;, (2.26)

configuration density of Rj-ion pairs per unit dR-interval, 4nR% (R, Ei, () Nt
(cm~%) with internal energy E; < 0, or per unit dRdvi-interval for £, > 0, (2.10)
phase-space density of Ri-ion pairs, i.c. configuration density per unit do,-
interval, (2.2)
Maxwell-Boltzmann ion pair density per unit dR dE;-interval, (2.14)
probability of an ion-pair-neutral collision, (1.4)
R,,f; exp (V/kT)R-*dR, (2.58), which is such that P(R,)/P(Ry) is the prob-
ability .#¢ that an R,-ion-pair contracts by diffusional drift in the presence of an
instantaneous sink at R, (2.77)

2.77a) for instantaneous sink and (2.774) for finite-rate sink.
probability that an R-ion pair expands by diffusion to infinite internal separation
against attractive force, (2.78)
integral cross section for ion~neutral elastic (E) or charge-transfer (X) collisions,
(2.7), Appendix B.
natural unit of length (¢2/kT or ¢2K/De) appropriate to coulomb attraction,
(2.57) ~ 55.7nm at 300K.
outermost turning point associated with bound-level of energy — E, (2.17),
(2.51); maximum radius of three-body collision sink
Internal separation of ion pairs with internal energy E;, before (2.3)
trapping radius appropriate to ion species i as a function of gas density, (4.17),
(4.21)
screening length, (4.7)
Thomson trapping radius (2¢2/3k7T) ~ 37nm at 300K, (4.17)
radius of strong-collision sink, compressible with increasing N, (2.70, 2.82)
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o(g,y) differential cross section for ion-neutral scattering in the centre-of-mass frame
T gas temperature (K)

T time-interval between collisions, (5.20}, (5.34)

V(R) ion-ion interaction potential

-V hound level given by intersection of R and V(R), (2.5)

0y, Ui velocities of gas atom and ion before collision, (2.4)

g, Ut velocities of gas atom and ion after collision, (2.4)

14 probability for an ion-neutral collision, (1.5)

Xi internal kinetic energy of relative motion of an ion pair, normalized to £ T, (5.36)

2, THEORY OF ION-10N RECOMBINATION AS A FUNCTION
OF NEUTRAL GAS DENSITY

In this section is presented the development of the basic equations to be solved for determi-
nation of the phase-space densities of ion pairs (§2.1), and the development (§2.2) of the basic
expression for the rate a of rccombination. An exact expression for the steady-state a is provided
(§2.3) in terms of the rates for ionic transport and reaction, and similarities with a density-
dependent reaction sink are explored in § 2.4. Finally, in § 2.5 is presented an analytical time-
dependent solution of the Debye-Smoluchowski equation associated with a general spherical
field for time-dependent ion densities and recombination rates a(t), a macroscopic equation
which follows quite naturally from the present microscopic theory.

2.1. Basic equation for ion-pair phase density
Consider the drift of negative ions of density n:(R, v),¢) and velocity o; at time ¢ under inter-
action V(R) across spheres of radius R centred on each positive ion, which are distributed with
density N*cm-3, so that the number density M*(R, E;, t) of ion pairs with reduced mass M,,,
within the R-shells of thickness dR, with internal energy

Ei = }Mpf+ V(R), (2.1)
and with internal motion directed along &;, is
NFR,E, di,t)dR = 4nR*dRni(R, v, t) N+. (2.2)

Two approaches with similar effect can be adopted. The fate of an ion pair may be established by
considering its previous history of elastic and inelastic collisions with the neutral gas. Here the
mutual interaction F(R) between the positive and negative ions is internal to the ion-pair system,
The other approach, which we adopt here, is based on the motion of a given species of ion
{ncgative ions, say) moving under a field of intensity E = — V1’/e (which is conservative and now
external to the negative ion) and undergoing elastic ion—-neutral gas collisions. Expressions (2.1)
and (2.2) link the basic quantities associated with each approach.

The present development is based on the Boltzmann equation (cf. Chapman & Cowling 1970),
which (in this instance) equates the complete time rate of change of the phase-space distribution
of ions with the appropriate ion-neutral collision rate integrated over the velocity distribution of
the neutral gas species. The basic assumptions inherent in the derivation of the Boltzmann
cquation from the fully general Liouville equation (or from the B.B.G.K.Y.t{ hierarchy of

t After Bogoliubov, Born and Green, Kirkwood and Yvon who independently derived the equations between
1935 and 1949 (cf. Ferziger & Kaper 1972).
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equations) for the phase-space distribution of all ionic and gas particles are (a) that only binary
collisions occur via (b; interactions Vi(R) of short range R outside which (¢) the precollision
velocities are distributed randomly with no correlation (molecular chaos), and (d) that the
distribution functions do not vary appreciably during an encounter. These approximations arce
fully justified for percussive collisions between spherical particles. For van der Waals ncutral-
neutral and polarization ion-neutral attractions for which Vi ~ R-%, and Vi ~ R~* respectively,
long-range collisions do not, however, furnish the significant contribution to the collision integral,
and so for ions moving in a gas, the Boltzmann equation remains valid.

The phase density n;( R, i, t) of negative ions (to be called Ri-ions which form Ri-ion pairs) of
mass m (= M,, the reduced mass of an ion pair) in a conservative external field of intensity E
satisfies the Boltzmann equation (cf. Chapman & Cowling 1970, Ferziger & Kaper 1972, Holt &
Haskell 1965)

a ~ o
"’“(‘;—-’t"—"’) +01- [Vem(R, v,0)] + (%E) Vo m(R, o,1) = (%)e. - (“(—”")b (2.3)
in which the explicit time rate of change (¢n;/0t) results from the following four mechanisms.

(a) The continuous transport (diffusion) of R-ions across the R-sphere due to the R-inhomo-
gencity in n;.

() The continuous drift in velocity space due to E which produces an acceleration eE/m in
each of the n; AR ions initially with velocity points o; within the phase element Ap|AR, i.e. the
Rj-ions drift in velocity space at the common rate ¢E/m and are therefore lost from the initial
elementary region.

(¢} The quasidiscontinuous change (0n;/0t).) of ions with velocities within Av; upon clastic
ion-neutral collisions which therefore remove ions from one velocity element Av; to another.
Replenishment to Ao is due to similar displacements from other elements of velocity space.
Hence,

[PR20) [ [ (R 90 ) MR 040 0) = (R, 91, (R, 00,0) (g5, ) d €21 o,
(2.4)

where Ny(R, v,,¢) is the phase-space density of neutral gas species, and where the ion-neutral
differential cross section at relative velocity gi( = v1—9,) for elastic scattering by angle  into
solid angle d2 is o d£2. The 2-integration is over that scattering region £’ made accessible for the
production of speeds associated with final ion and neutral velocities vt(vi, 9,, £2) and v;(vy, ,, 2),
respectively consistent with initial fixed v and v,. Note, however, that these elastic scattering
terms produce energy changes (inelastic effects) to the internal energy £, of an ion-pair system.

(d) The loss of ions (0ny/0t)g due to the recombination sink tends to cause a redistribution
in internal energies E; of an ion pair with fixed internal separation R and represents, in this
sense, a transition probability. We seek to develop a theoretical expression for the microscopic
and overall effect of this term.

Because of their continuous development in phase space, (a) and (b) provide the ‘streaming’
or transport terms. We note that the ion density N* must be sufficiently low (less than about
10 cm-3) compared with the gas density N so that the effect of ion-ion direct collisions can be
neglected in comparison with ion-neutral collisions which are only included in (2.4). Hence N,
in (2.4) can be taken as the Maxwell-Boltzmann distribution such that (2.3) with (2.4) is then
the ‘linear’ Boltzmann equation.
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As already mentioned, (2.4) produces inelastic transitions (E; - E;) in an Ri-ion pair and on
integrating over v? d#;, an equivalent expression for (2.4) can, onreplacing v, by (2.1), therefore be
written as,

R E; ¢
(2520 - N] B mRED kB -n@® B £ R], (29)
el

ct t=—-V fe=—V

where N is the number density of gas atoms (or molecules) Z, and Nky(R) is the frequency at
which an Ri-ion pair is converted into an Re-ion pair by elastic collision of either ion with Z, i.e.

f+Af max
N ? ku(R) = Nky(Ey, Er, R) dE,=f 4rNy(0,) “. go(g, ) d(cosy) d¢] 2 dv, 4d(cos 6i);

cos, = 6, -6, (2.6)

where Uy 4, Vrax and 2’ are such that a final speed v; of ion—ion relative motion is obtained from a
given v; and g and where Af is the number of states in the energy interval dE; about E;. For
example, for symmetrical resonance charge-transfer ion-neutral collisions, with cross section Q%
independent of relative collision speed, we have (Flannery 1980, Bates & Moffett 1966)

E‘k"(El,E,,R)E fk;,dE,=(1%“-‘) M de, L:*:*Mn[o @R +24M)]},  (2.7)

where F, is the Maxwellian distribution in speed v, of the neutral gas, ¢ is the ratio of the mass M,
of the colliding ion to the mass of the spectatorion, and 4 = Ty — T}, the change in initial and final
kinetic energies §M, (1 +¢) o} , of relative motion of the positive and negative ions. The f-sum-
mation, over all final bound and ontinuum statesof the ion pair, can be replaced by an integral
when a quasicontinuous spectrum cf intevnal energies is assumed. Detailed expressions for the
rates ky associated with elastic ion-neutral collisions have been provided (Bates & Flannery 1968,
Flannery 1981 4). The sum or integration is taken over all final states f of the ion pairs, from the
continuum C down to a level —V, the lowest accessible at R appropriate to interaction energy
V(R). Summation of (2.5), the elastic collision integral, over all initial levels E; (or integration
over all ion specds v1) is null, in accord with the fact that the number density of all ions is con-
served in elastic collisions. Implicit in the rate (2.5) are the following assumptions.

(a) The gas is in thermal equilibrium so that its density distribution N,(v,) in gas velocities is
isotropic, is independent of both time ¢ and position R and depends only on the speed v,.

(6) The number densities N+ of ions are much less than N, so momentum and energy imparted
to the ions by their mutual field of intensity E and transferred subsequently by collision with the
gas Z have a completely negligible effect on Ny(v,). When such thermal gradients do exist, they
cause thermal diffusion in mixtures. The centre of mass of the ion pair is therefore assumed to be
in thermodynamic equilibrium with the gas Z.

(¢) There are spherical symmetric R- and v-distributions of negative ions about each central
positive ion so that the ion densitics in (2.4) and (2.5) are related at fixed R by

n(R,v,t) = 4nvin(R, 0,,t) = m(R,E\,¢), (2.8)

« x k]
¥ (R EV = 4RJ“ (R, vy, ) v} duy =J‘ m(R, vi, 1) du. (2.9)
" 0

==V

Also the density N ofion pairs in the R-shell of thickness dR is related to the negative-ion density
nj b)’
NP (R,v,,t)dR = (4rR*dR) ni(R,vi,t) N* = N¥(R,Ei, 1) dR. (2.10)

L
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(d) The interaction V between the ions is switched off during the ion—neutral collision to be
consistent with the left-hand side of (2.5), in which the field is external to each negative ion, i.e.
the field cannot be included on both sides of the Boltzmann equation (2.3).

The sink term in (2.3) can be written as,

an.(R,E.,e)] 3R N oowm
m(R,Eno)] _ R, Er, 1) kn(R N¥(R, Ex,t) kn(R) (2.11
|52 - N TS mlREuOkn(R) = o % NEREnOka(R) (210

where the energy of the bound level —M is E_y = max[E_y(R), E_g] in which E_g is the
negative energy of the bound level —S below which recombination is assumed stabilized against
any upward collisional transitions in energy. If the level — V(R) of energy E_y(R) at R is above

— Eg, then the sink term is ineffective. The sink term (2.11) in effect ensures that upward
transitions, in internal energy, due to elastic ion-neutral collisions, from levels between —V and
— M are not included in the right-hand side of the Boltzmann equation (2.3), and compensates
for their oversubscription in (2.5). With the assumption of R-spherical symmetry in n;, (2.3), with
the aid of (2.4)-(2.11), yields

om(R, v1, t) am(R v, t) 41!01 I:m(R, vi, t)] (ﬂ/)}
ot oR myg av; 41!01’ R

= [ [ iR, 0) No(o}) = ms(R, ) Moo Lo, ) d21 o

= N[ 2‘, nt(R, ve, t) kei(R) — ni(R, vy, t) 2 k" R)] (2.12)
t=—M(R)

as the basic equation for the solution of the phase-space densities of negative ions. The corre-

sponding equation for phase-space densities N¥(R, E\, t) of ion pairs follows directly from (2.12)

with the aid of (2.10) and of 8/0v; = mv;0/0F, at fixed R.

When thermodynamic equilibrium prevails, i.e. in the absence of the sink term (2.11), the
steady-state solution to (2.12) is a product of two independent functions, one of position R and
the other of speed v, and is such that both sides of (2.12) simultaneously vanish. The equilibrium
number density of negative ions is found (after a not too trivial exercise) to be

ny(R,v1) dvy = N-exp[— V(R)/kT) Fy(v1) du; (2.13a)
= N-exp[— V(R)/kT] [4rv}(m/2nk T\t exp (— ¢mo}/kT) dvi], (2.135)
where Fy(v1) do; is the Maxwell distribution in ion speeds v; at temperature 7. The equilibrium

number density of Ri-ion pairs in the R-shell of thickness dR and with internal energy in the
interval dE) about E; is, therefore, with (2. l) and (2.2),

Ny(R, E.)deE.—4nR’dR[ (B~ V(R)Jtexp (- E./kndE.]Nw— (2.14)

VET)
of which one half move inward and one half move outward across the R-sphere, respectively.
Also the rates k¢ satisfy the detailed balance relation (Flannery 1981 a)

No(R, 1) ku(R) = No(R, Er) kn(R) (2.15)

as expected. The equilibrium number density of all ion pairs in all permitted internal-energy
states within the R-shell is

Ny(R)dR = dR : v Yo(R E0) dEy = 4xR*dRexp[ - VR) KT N*N-.  (2.16)
-
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The equilibrium number density of ion pairs bound with negative energy in the interval dE
about E is

Ny(E)dE = dEf NRE)dR_k;[C(E)exp(—E/kT)dE]N+N—, (2.17)

where Rg(E) is the outermost turning point obtained from E = V(Rg), and where for a pure

coulomb attraction Bl
E J‘ (¢/R—|E|)i R*dR = jn|E|L, (2.18)
0

as obtained (Bates & Flannery 1968) for the equilibrium energy distribution of bound X+-Y-ion
pairs in the absence of the gas Z.

The right-hand side of (2.12) can be replaced by N{#v; where v; is some averaged collision
frequency. The characteristic time for substantial variation in the 3/d¢-term in (2.12) is much
longer than the mean time »;"! between collisions so that the explicit time derivative in (2.12) is
negligible with respect to the right-hand side. Hence, by setting

NF(R,Eit) = N¥(R,E\) exp[ — A(E) ], (2.19)

in (2.12) and by ignoring the small decay frequency 4(E;) of level i in comparison with vy, as in
a steady-state solution, we have

NR )] g dmdd (1 (R oV
2 — o (| c— *®
"'IU e o | 4,“,?“.0 Nt (R,v) aRdR]’]]

= [ 2 (R, Nitol) — N2 (R ) Ni(o0)) (6 d9) do (2.20a)

R c C

= N[f dR I NFRE)kn(R)—-NFRE) I k"(R)] (2.200)
0 f=-M@&) 1= V(R)

as the basic set of coupled integro-differential equations to be solved in general for the steady-

state (R, Ey)-distributions of the ion-pair number densities N (R, E;). This set is solved subject

to the boundary conditions that
No(R,Ey), Ei >0, R-> o,

NER,v) = N¥ (R E) = {NO(R, E)), E;— oo, allaccessible R, (2.21)
0, Ei<-E;, R <R(Eg),

appropriate to the continuous generation of ion pairs with infinite separation.

Note that when the R-integration in (2.20) is taken over the full range of internal separations
occupied by an ion pair of energy Ej, i.e. between the turning points R. of E; = V(R), where
vi(Re, E) vanishes, then upon assuming that the left-hand side of (2.20) vanishes everywherc in this

rangc we have
NHE) % (k.,)— 2 SV (B Sk (2.22)

where —V is the lowest bound energy level, the averaged rate is

(kll(Eg,Er)) = J. N‘ R E|) kn(El, Ef, R) dR RM = min [R E|) (Er)] (2.23)

Nt (E
and the physical density of ion pairs with energy E, is,
RE)

N*(E)) = fo N*(R,E)) dR. (2.24)
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Results (2.22)-(2.24) apply when the left-hand side of (2.20) is assumed negligible at all R
(rather than at the turning points alone), and correspond to the quasi-equilibrium result
originally introduced by Bates & Moffett (1966) and by Bates & Flannery (1968) in thcir treat-
ment of ion-ion recombination in the low gas-density limit, when the diffusional-drift streaming
terms balance in a Maxwell-Boltzmann quasi-equilibrium. In general, however, the full set of
basic equations (2.20) require solution subject to (2.21) as the gas density is increased.

2.2. Recombination coefficient o from derived equations of continuity, momentum and flux

To develop an expression for the recombination coefficient « in terms of ion-pair number
densities N*(R, E;), we proceed by constructing the appropriate flux or momentum equation
from the Boltzmann equation (2.3) as follows. Returning again to (R, v;)-phase space occupied
by the incoming negative ions of density ni(R, vy, t), we write the v;-averaged value of some
physical quantity Pi(R, v, ) as

P(R,t) = <P> = =g [ m(R,01,0) PR, 0, 1) doy, (2.25)
where the configuration-space density is
a(R,2) = J' n(R, i, 1) doy. (2.26)

On multiplying the Boltzmann equation (2.3) by P, and integrating over v;, we have

a"éfo n<aP + V- [(F0)] —n{0,;- Va ) - "(E) (Vo P

= LP,(R, o, 1) (%)ﬂdv, - me,(R, o, 1) (aa’:’) do,  (2.27)

However, microreversibility between the direct and corresponding reverse encounters applies
and

fmf“ fnl’ln,N.’,[g.a(g., ¥)] d2dv,do, = f,, f" jnﬂn,No[g,U(g,, ¥)]dQdo,do;, (2.28)

since the collision is elastic (g, = &), and since do,do, = dv,dwv,, so that, with the aid of (2.4),

[ A(5) do=[ [ [ (AR ou0-R(R 0,01 Nleo (e, ) dR) dodo,.  (2.20)
o; ojJ oo
When P, is set to unity the effect of elastic collisions is null {conservation of ions with all speeds)
and (2.27) reduces to en(R, 1)
ot

I Cpenl(R, 1) <o.>=-j° (”") do,, (2.30)

the equation of continuity in the presence of the sink S. When £, is taken as the vector mo,, since
m{v;—©0,) = u(g, — &), where u is the ion-neutral reduced mass, we can show, after some
analysis, that

fﬂ”“h (aa_’:l).l do, = ‘I‘J&Rn(gn) n (R, v,,t) No(R, vy, t) do, do,, (2.31)

where Ro(e) = [8(1 ~cosp) a(g, ¥ de (2.32)
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is the momentum-transfer rate (cm?®s-!) which, for an ion-neutral pure polarization attraction,
is independent of g,, the relative speed | (v, — 9,)|. Since the gas is, on average, considered at rest
(with respect to the centre of mass of the ion pair), {v,) is zero such that

fvlm (%)ﬂdm = —n(R,t) (o1) [ﬁRD N(R, t)] = —n(R, 1) (o) v, (2.33)

where the configuration-space density of neutrals is
N(R,t) = f Ny(R, vy, ) do,, (2.34)

and the term in square brackets, the frequency v of ion-neutral collisions, is only approximately
a constant for ion-neutral interactions that depart from the pure polarization form. This
frequency can also be derived from (2.5) with the result that

n(R,t) (o)r = N.-g_v v|'_zc_:v[m(R, Ei t) kn(R) - ni(R, Ey,¢) kir], (2.35)

where v, can be expressed in terms of E; by (2.1). Hence with (2.33), (2.27) yields the momentum
equation
am

@_[LR’G:M'F Ve [7(R,t) {vi10:)] —%n(R, t) = —n(R,'t) {o1) v+fqv| (__

AT )s do;, (2.36)

where the jk-clement of the direct product {v;9;) tensor is v{w{®, the product of cartesian
components {#}", j = x,y, z} of the velocity v;.

In ion-ion recombination: (a) the recombination-sink rate is many orders of magnitude less
than the collisional rate so that the sink term in (2.36) can be neglected in comparison with
n{v1) v; (b) the characteristic time for substantial variation of n(R, t) {v;) is much longer than the
mean time v~1 betwecn collisions so the time derivative in (2.36) is also negligible with respect to
n (v1) v. Macroscopic diffusion is characterized by a flux vector D- Vgn(R,t) both in equilibrium
(Maxwellian) and in non-equilibrium situations, where the diffusion (symmetric) tensor is

D = (viv))/v (cm?s!) (2.37)

in terms of the averaged kinetic energy and collision frequency given in (2.33) or (2.35), while
macroscopic drift is characterized by a flux vector KE n(R, t) where the mobility is

K=e¢/mv (cm®StatV-1s-1), (2.38)

The ion-neutral collision frequency » is central to both quantities. In thermal equilibrium, i.e
in the low E/N region where the thermal energy dominates the drift energy, m(v,v;) = (kT)1,
where 1 is the unit tensor. When departures from spatial isotropy are dominated by the electric
field E, the diffusion tensor D is diagonal with elements (Dy, D, D;), longitudinal L and trans-
verse T to the field direction E. In thermal equilibrium these elements are equal so that the
Einstein relation (De = KkT) holds.

We now assume (¢) that (9, 9,) is R-independent, as in quasi-equilibrium when the phase-space
distribution n; separates into a product n,(R) ny(0;) of separate functions of R and o, as in the
Maxwell-Boltzmann distribution (2.134). Under assumptions (a)-(c), (2.36) provides the current

J(R,t) = n(R,t)(0,) = —D-Ven(R,t) + KEn(R, 1), (2.39)
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which together with the equation of continuity (2.30) implies

(R, t)

oni(R, vy, ¢
= +Vg-[—D.V,,n(R,t)+KEn(R,t)]=._f '“—"*)] do,

oni(R, E;, )] , (2.40)
N

C
= —1 z\ )[ ot
in which the summation or integration over all states i between — V(R) and Cis equivalent to the
v-integration for spherical R-symmetry. On introduction of the null collision quantity,
c c c
Z |NRE) S kB - T NPRE,ky(R)) =0, (241)
where — A is an arbitrary bound level, the sink term in (2.40) and given by (2.11) may be
written as :

[a_'“] =1v[ S NMRE,) S k(R)- S5 NHRE,Nk (R)](4,,R2N+)_,
i=<vim L0t I o By VTS ERl)  Rie RN LI o

On integration of (2.40) over R and with the aid of Gauss’s theorem, of spherical symmetry and
of (2.2), we have, on replacing E by — (VV') /e, the appropriate flux equation
on(R,t) t)
¢R

a%[ foRN'(R,z) dR]-4nR=[D R0k aV] N+ = —ay(R) n(RG) N+ (2.43)

in terms of the net depletion (recombination) rate (cm—3s-!)

aRn N = N["ar( 3 [NREN T ka(RI- T NIREOK®], @40

appropriate to the local (rather than asymptotic) density n(R, t) of negative ions.

Subdivide the spectrum of internal energy into three regions: I, from C to some arbitrary bound
level —E; II, from —E to — M; and IT], from —Mto — V. Regions I and II are interconnected
by upward and downward collisional transitions and are inaccessible from region III which is
therefore connected with I and II only through downward transitions. Introduce the inward
diffusion-drift operator

F1=DV+(K/e)VV = Dexp(—V/kT)Vexp (V/kT), (2.45)
such that the inward currentj (cm~2s-!) is j;n(R, t), and the flux operator 2 which is such that
the flux across the spheres each of radius R and surface area & is

Z[4nR*N*n(R,t)] = — N+ f J-dS = 4nRIN*(R, 1). (2.46)
s

Einstein's relation De = Kk T has been used in (2.45) since the ions are in quasi-equilibrium with
the field.
The contribution from region I to the left-hand side of (2.43) is therefore

O T ~E -E
—(;'[J",\'f<R,r)dR]+9N,*(R,r) N dR s ( NP X ke z“N,‘k"), (2.474)
. 0 oV =

t=—F
on making usc of the null collision relation (2.41) with — A taken as —E, and where explicit
dependences in the right-hand side are omitted. The right-hand side of (2.474) is constant for
R 2 Ry, the outermost turning point associated with —E, i.e. V(Ry) = — E. For region 11,
I e R -E C c
~&| [ R0 dR|+2NER = N[ (4R T (NP S ke- £ Niki), (2475)
0 te—v t=-M

0 i==-M

A
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while for region III,
Q[ (R R -M ¢
-a[ f N,‘,,(R,t}dR]-f»@Nf‘u(R,t)=—1V dR'S % NPk, (2470
0 0 i==-Vi=-M

For all three regions the number densities N;*(R, Ey, ) on the right-hand side of (2.47) are
solutions of the time-independent set (2.20) of coupled integro-differential equations. As pre-
viously noted, the left-hand side of (2.20) vanishes as R tends to the turning points R(E,) asso-
ciated with bounded motion for a state of (negative) energy £,. For the spectrum of bound levels
in region II, it follows that the left-hand side of (2.20) does not depart appreciably from zero,
particularly for levels — E and — M sufficiently close and deep, so that the radial extent of the
associated bound orbits is minimal. Hence for region II, we have

c c
NE(R, En‘)'sz_v/‘n (R) I_}EM NE(R, By, t) ky(R); —E 2 Ey 2 E_y, (2.48)
as for quasi-equilibrium at each R. Thus the right-hand side of (2.475) vanishes in this approxi-
mation, in contrast to that for region I which includes the unbounded continuum and highly
excited vibrational levels with large amplitudes of radial motion. Since all ion pairs with energy
below —Ey have recombined and are irretrievably lost to the recombination in progress,
NP (R, (E_.; > E_y)) vanishes, so that (2.48) implies, in the above approximation, that

c

th NY(RE ) ky(R) =0, E_y2E >E., (2.49)

which makes the right-hand side of (2.47¢) vanish. This effectively zero rate is not difficult to
establish since the collision rates k¢ are relatively large only between neighbouring levels, which
in this case are in a range surrounding — M at which the number densities N7 of active ion pairs
have already become much reduced from their equilibrium values (2.14) by the recombination
process. Hence upon addition of 2.47 (a)-(¢) over the three regions, the overall number density

N*(R,1) satisfies
a" R R C —E -®
-—U N*(R,t)dR]-N+f J-dS=Nf dR ¥ (N,“ Y k- X N,*k,,)
otlto & 0 t=-v t=—M

1=—E

= ay(R) n(R,t) N*. (2.50)

Steady-state conditions can be maintained by continuous generation of ion pairs with infinite

separation at an inward flux rate
F,=~N+ f J-d§

S -0
so that
—d(N2)/dt+ F, = a3(Ry, ) n(Rg) Nt = aN*N-, (2.51)
where Rj; is the maximum radius associated with collisional transitions across the energy level
—E,i.e. V(Ry;) = — E. Hence the steady-state recombination coefficient is,
a = ag(Rg)n(Rg) /N~
N Rg C -K -E
= (=) [Far T [MrRE) B kR)- B NIRE)K(B)],  (252)
N+N-]Jo j=—E t=—v t=—M

where the number densities N (R, E;) are determined by appropriate solution of (2.20) subject
to the boundary conditions (2.21). The solutions will, in general, depend on gas density N, and a
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i s then a general function of N. We note that (2.51) equates the steady-state inward flux a N~ or
4xR? #n with ay(Ry;) n(R;;) which is the net rate of reaction within Ry;. Thus (2.51) and (2.52)
manifest quite clearly a partially absorbing boundary condition at Ry around which the ion
density is continuous.

In summary we have obtained in this section the necessary equation (2.20) for solution of
N¥ (R, E\,t), and the appropriate equation (2.50) or equivalent expression (2.52) for the recombi-
nation coefficient a from the appropriate flux equation (2.43), a combination of a derived
momentum equation (2.36) and the equation of continuity (2.30).

2.8. Steady-state solution
As R —> Ry and beyond, N*F(R), the right-hand side of the flux (2.50) becomes constant.
Let the ion-density N*(R,t) decay as N*(R) exp ( — At) so that (2.50) reduces, with the aid of
(2.51), to

R 0
N*F.(Rg) = AN+J. 4rR%n~(R)dR +4nReN +*Dexp (- V/k T)ﬁ [n=(R,t) exp (V/kT)]
0
= ag(R)n~(RYN+=aN*N-, R2R;. (2.53)
where n~(R) denotes the density of negative ions.
The steady-state solution of (2.50) involves neglect in (2.53) of the A-term which depends on
n=(R) within Rg. This neglect implies
R
J' £ anRin~(R) dR < 1 (2.54a)

0

since 4 ~ aN-, such that N- < (4=R%), (2.54b)

i.e. few unreacted ions must be present in the ‘recombination volume’ as measured by the
Rg-sphere in order that the frequency decay constant A may be neglected. Given Rg ~ ¢2/kT
for example, appropriate to a bound level at kT below the dissociation limit, N+ € 10%cm-3
for validity, while smaller R (as at high N) will extend the limits to higher N t. Integration of
(2.53) under the steady-state condition then yields

N-—n~(R) exp (V/KTy) = [Fe(Rg)/ar] P(R), R > Rg, (2.55)
where an = 4nDR,, the high density Langevin limit (1.2);

P(R) = R. [ cxp (V/kTun) dR/ R, (2.56)

is an important function related to the probability (§2.4) that the R-ion pair expands by
diffusional drift to infinite separation; and

R, = ¢¢/(De/K) = ¢ /kT oy, (2.57)

is the natural unit of length. At low E/N when the thermal energy dominates the drift energy,
thermal equilibrium at temperature T is obtained, and the Einstein relation De = Kk T or,
cquivalently, DR, = Ke, holds such that T, in (2.55) and (2.56) is simply T. The steady-state
negative-ion density outside Ry, can, with the aid of (2.53) be written in two equivalent forms:

R = - % piy] = Noexpl= VIR)KT] o/ P(R))
r8) = Nocxp (= VD)= PR = e VR T gy © B
(2.58a)
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in which T, is denoted here by T for brevity;
n~(R) = N-exp (- V/kT) exp[—%j: aq(R) R‘”dR]. (2.585)
h

Hence the overall recombination coefficient a from (2.53) is

_ ag(Rg)exp[ — V(Rg) /kT][an/P(Rg)]
~ ag(Rg)exp[— V(Rg)/kT] +an/P(Ry)

in terms of &, which is known, and of a4( R,;) which is yet to be determined. Since a4 is internally
dependent on the phase densities, N¥(R, E,), through (2.44), we note that «, with this required
knowledge of N, may, of course, be determined directly from (2.52) rather than from (2.59).
However, not only does (2.59) promote further physical and basic understanding of recombi-
nation, but it is also very effective when alternative means are used to deduce a;(Rg), as, for
example, in § 4.2. Steady-state conditions are also achieved at R > R, effectively instantaneously
for low N, and after time lapse t> R%/D for high N (see § 2.5), and are independent of condition
(2.545).
Since an ~ N-1, from (2.58), at low gas densities N,

a = ay(Rg) n~(Rg)/N- = const. (2.59)

n~(R) ~ N-exp[-V(R)/kT], R > R, (2.60)
the Boltzmann distribution, such that (2.59) tends at low N to
dyo = a3(Ry) exp[~ V(RE)/kT] = ap(Ry), (2.61)

which is from (2.53) the recombination coefficient that would pertain provided the Boltzmann
ion-distribution were maintained (as at low N), i.e. arn in the absence of net ionic transport (asin
a Boltzmann distribution) measures the rate of reaction within R;.. Thus, (2.59) reads,

a = arndtr/(“m +aur), (2.62)
where the recombination coefficient ay; at high gas densities is,
oy = 41:D/J‘w exp (KV/De)R-2dR = [ay/P(R,)] = a;, (2.63)
(N
the rate of ion transport by diffusional-drift. Hence, the ion number density (2.58) is
SR = N- , 2 P(R) ,
n (Ry = N-exp (- P/IcT)[l “um]' R > R,. (2.64)

At high N, therefore, n-(R) from (2.64) departs significantly from the Boltzmann distribution
at Rx R, where the reactivity of the ion pairs is strong; and at low N, n- is approximately
Boltzmann where the reactivity is weak. As Nis increased, the reactivity of the ion pairs (resulting
from ‘effective’ collisions in the increasingly dense gas) becomes so great compared with the rates
of ionic transport that continued reaction causes significant depletion in the ionic concentration
in a localized region, and the ion R-distribution from (2.64) is far from Boltzmann. This feature
is, in general, responsible for the failure of the use of equilibrium kinetics (partition functions, etc.)
or of cquilibrium concentrations of reactants for rates of chemical reactions in a dense medium,
in contrast to that evident for low density gases (sce (2.60)). Itis also this feature that invalidates
the ab initio use of the Debye-Hiickel interaction, appropriate only for equilibrium situations at
asymptotic R, so as to acknowledge possiblc plasma sheathing effects when the ion densities N+
are raised from 108 cm~3 to about 104 cm=-3, Use of an interaction, self-consistent with the ionic
distribution and recombination sink, is the correct procedure (see § 4).
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We rote that a, and hence ay, contain, in general, a complicated dependence on N through
(2.44) and (2.20). The overall recombination rate (2.59) is, therefore, controlled by the rate-
limiting step of the rate of ionic transport, as measured by a.r, and of the rate of ion-ion reaction
(by effective three-body collisions), as measured by arn. Thus, the full theoretical development
of the relation (2.62) has provided basic insight into a relation previously suspected (Bates &
Flannery 1969), of one that is useful when the rate a;q of reaction can be deduced without explicit
knowledge of the phase densities N¥(R, E;), as in §4.2.

The physical significance of P(R) in (2.63) and in (2.64) where it provides the R-variation of
the departure of n=(R) from pure Boltzmann is made apparent in the following subsection; further
study is also made of the separation of recombination into its transport-rate and reaction-rate
components.

2.4. Partially absorbing and fully absorbing sinks: transport and reaction rates

The time-dependent continuity equation (2.40) is

- C
W R, o g % [ann(R,E:,t)] , (2.65)
ot f= —V(R) o s

where the current vector (number of ions per second crossing unit area of an R-sphere)
J = —D[Vn—(R,t) +n~(R,t) V(V/kT)] = —Dexp (- V/kT){d[n—exp (V/kT)]/dR} R, (2.66)

arises from diffusional drift of the ions with relative diffusion coefficient D in the gas Z under an .

external spherically symmetric field of potential V(R). Thesink term (2.11) has been shown to be,

B C -E —-E
RO RN = N[ aR| T [NFREN T k®)= T, VIR EDkR)]).
(2.67)

which equates the frequency of production of R-ion pairs by diffusional drift to the frequency of
ion reaction within R.

Although the phase-space densities ny(R, Ey,¢) are in principle solutions of the appropriate
time-dependent Boltzmann equation (2.12), important progress can be achieved upon assump-
tion of either an instantaneous reactive sink or a partially absorbing sink that operates for ion
pairs with internal separations R < S. Also, the physical meaning of Pin (2.63) becomes apparent.
Thus (2.65) is equivalent, with j = S-J, to, 2

n- 1 O(RY
R aRJ) =0 (2.68)
solved subject to prescribed boundary conditions that characterize the sink under different gas
densities.
The steady-state solutions at R, and R, therefore satisfy

[n~(R) exp (V/kT)]R; = (F/4zD) [P(R,) - P(R,)], (2.69)

where P(R) is given by (2.56) and F is the steady-state constant inward flux 4xR?. For ion pairs
that react (neutralize) instantaneously within the sink S, as at high N,

n~(R,t)=0, R<S,
] (2.70)
n~(Rt) =N-, R>o
such that {2.68) yiclds,
e =am=F/N-= 4nD/j0exp(V/kT)dR/R’, (2.71)
s

33-2
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the transport rate, which at high N is equivalent to the recombination rate. This reduces to

aq = 4nDS (2.72)
when the interaction V between the ions is neglected, and to
ay; = 4nDR,/[1 —exp (- R,/S)], (2.73)
for pure coulomb attraction
VIkT = - Z,Z,¢*/RkT = — (R,/R) (2.74)

between ions of charge Z,e and — Z,e.

For recombination in a gas, (2.72) and (2.73) are the diffusion and diffusional-drift results of
Harper (1932) and of Bates (1975) respectively. For coagulation of colloid suspensions in a liquid
of permittivity ¢, analogous expressions (with R, = Z, Z,e2/ek T') have been obtained by Smolu-
chowski (1917) and by Debye (1942). For this reason the full time-dependent equation (2.68)
for a spherical field is frequently referenced as the Debye-Smoluchowski equation, derived
originally by Smoluchowski (1916, 1917) from a stochastic random-walk picture of the process.
The interesting feature is that it is a natural consequence of the basic microscopic treatment,
which therefore provides its full generalization (2.65) and (2.67) to an arbitrary compressible
sink based on detailed collisional kinetics which in turn depend on the phase-space densities
ny(R, Ey, t). However, with this knowledge of n,, the steady-state « can be obtained directly from
(2.52), rather than from the solution of (2.65).

It is interesting to note from comparison of (2.72) and (2.73) that proper account of the inter-
action field is acknowledged simply by replacing S in the field-free case (2.72) by R,/P(S); and
that (2.72) alone is incorrect if realistic § oc (R,/N)# (see § 4.2) are adopted. As Nisincreased, it is
obvious that the three-body reaction zone must decrease and cannot be arbitrarily held at R, to
ensure identity between (2.72) and the correct limit (2.73). This note helps resolve previous
confusion that existed (see Flannery 1976, p. 423) between treatments based either on pure
diffusion (Harper 1932) or on pure mobility (Langevin 1903). Neither treatment is rigorously
correct: mobility and diffusion effects must be coupled as in (2.71), although only for pure
Coulomb attraction any error in Langevin’s derivation disappears in the high-N limit unlike
thatinvolved with (2.72). This coupling also cnsures thermodynamic equilibrium between effects
of mobility and diffusion and is very important to the general determination of the phase-space
densities (§5.2) at intermediate and high V.

A correlation can be established between two problems differing only in the generation
boundary condition, i.c. between the recombination rate a for thc homogeneous case where the
process is driven by the boundary condition (2.70) for (R — oc) and the probability .2¢(Ry, R},)
for the diffusional-drift contraction of ions generated at R,. Between R, and an instantancous
sink at R;. < R,, (2.69) then yiclds

n~(Ryexp (V/kT) = (Fo/4rD)[P(R;) — P(R)], R < R <R, (2.75)
where I, is the net inward flux at R. In the presence of a sink at infinity,
n~(Ryexp (I'/kT) = (F./4nD) P(R), R, < R < o, (2.76)

where I, is the net outward flux at R. The probability that an isolated R,-ion pair contracts by

diffusional-drift is
Pio(Ras Ry) = FU(R) [[Fu(Ry) + Fo(Ry)] = P(R,}/P(Ry,), (2.7

-
¢

a)
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where the subscript (s) denotes that this 2¢ pertains only to the case of spontaneous reaction. The
probability that it expands (by diffusion against the force of attraction enhanced by the presence
of the sink) to infinite internal separation is

P (Ro, Ry) = Fo(Ro)[[Fe(Ro) + Fo(Rg)] = 1 = P(Ro)/P(Ry). (2.784)

Thus, in the homogeneous case the negative ion density (2.58) can be rewritten as

(R) = N-exp (= V/KT)[1 — (a/a) iR, Ri)] — N-exp (= V/KT) Zin(R, Ry), (2.790)

where #, is interpreted as the probability of diffusional escape of an R-ion to infinity in the
presence of an instantaneous sink at Ry, and yields the fractional departure of n—(R) from pure
Boltzmann at high V.

Hence the recombination rate at high N is the transport rate

2y, = 4nRE Dexp (- V/kT)[0.7, (R, Rg) [OR) g, = ay/P(RE), (2.80a)

where ay is the Langevin rate 4nDR, and #, is the probability of contraction from R to R,,
against diffusional escape. Thus, the physical origin of P in the transport rate (2.63), which is
identical to the recombination rate at high N, is now apparent. For pure coulomb attraction at
high N when the sink radius R,; < R,, the escape and recombination probabilities reduce to

‘l?{s)(R) ~ exp ( —Rc/R)’ (2'8la)
and Piy(R) ~ 1 —exp(—R,/R) (2.81)

in agreement with Onsager (1938), and n~(R) ~ N-exp (- V/kT)exp (- R,/R).

Extension of the rate (2.73), valid only for instantaneous reaction after ion approach by
mobility-diffusion, to lower gas densities N can be achieved by solving (2.68) subject to the
more accurate boundary condition

J(R’ t) = Fa"_(R: ), R=35, (2.82)

where I'y(R) is the speed of reaction of R-ion pairs. This (radiation or partial absorption) con-
dition acknowledges the finite rate of reaction (by three-body effective collisions) after ion
approach and implies a probability for subscquent diffusional-drift expansion of the unreacted ion
pairs; if I'y is infinitely fast as at high N then (2.70) is recovered. The diffusion—drift equation

(2.68) governs ion transport up to S from which the ion departs inward with an effective finite -

speed I'y(S) towards certain recombination within §, the radius that characterized the transition
from transport (i.e. ineffective collisions) alone to reaction (i.e. effective collisions). Since

F = 4rRY = (4nR*T') n-(R,1) = a(t) N-, (2.83)

then, provided Boltzmann equilibrium conditions for the ions are maintained, the recombination
coefficient (F/N-) would be

Oy = (4rR2;) exp (— V/kT) = ay(R) exp (- V/kT), (2.84)

where we are reminded of the role of the finite rate of three-body energy-change collision (the
reaction rate) by attaching 3 as a subscript to both « and I".
Hence, (2.82) is simply
oy(S)n=(S,t) = 4xS8%(S,¢) = aN-, (2.85)

which equates the finite collisional recombination rate within § to the flux of production of S-ion
pairs. The basis of this radiation condition (2.82) or (2.85) has already been established
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theoretically by (2.52). Thus the steady-state solution of (2.68) for the ion density subject to
n (2.82) or (2.85) is

:
b

! - - N- _a P(R)

i n=(R,t > ) = N-exp (- V/kT)[l a,,P(S)] (2.86)
3 which yields the following steady-state recombination coefficient:

{ alt - o) = as(S)exp (-~ V(§)/kT)ay _ amay (2.874)

- a(S)exp (~ V(S)/kT) +ay  apm+ay
in agreement with the results (2.64) and (2.58) of the previous subsection.
For this case of finite reaction, a relation between « for the homogeneous case (with source only
at infinity), and the contraction and escape probabilities #¢¢(R, R;;) for the case where ion-
pairs are continuously generated with internal separation R, can be obtained, as before, from
(2.69) to yield

T

_ [ (R)—(a/ar) N-exp (= V/kT)]P(R)  am»e P(R)
n~(R) P(Rg) — (2/a) N-exp (- V/kT) P(R) P(Ry)
- P(Rg) - P(R) e P(R)
P(Rg) — (a/ay) N-exp (- V/kT) P(R) /n~(R) T P(Rg)
} _ The number density of ion pairs generated with internal separations in the interval dR about
Ris 4xR*n~(R) N*dR.
When n~ is given by (2.86) with § = R, then
a P(R) _

and  P<(R,R,) (2.775)

S P°(R, Ry) (2.785)

-

b u .?c(R,RE) =a:P(‘Ti-)=l-?e(R,Rh)’ (277C)
b so that n=(R) = N-exp (- V/kT) #*(R, Ry) (2.795)
and a = 4nR} Dexp (- V/kT)[2P/CR),, (2.80b)

which are the direct generalizations of (2.79a) and (2.80a) to finite reaction. Thus 2, in general,
may be interpreted as the fractional departure of the ion density from Boltzmann equilibrium

.. and is the solution of V- {exp ( — V/kT) V2¢} = Osubject to P¢(0) ~» 1 and D(0P¢/0R) = I'y P¢
: at R,.. Hence (2.85) and (2.874) may be rewritten as
a = Pray = P(Rg, Ry)a,, (2.87b)

where the probability of recombination

arn/“ln aen € Airy

P = Ay [ (Zpn + %) = P(R, R,,l.)—>{l e aur, (2.77d)

is simply the contraction probability for ion pairs generated with internal separations equal to
the sink radius, i.c. .#; < 1 is the probability of intrapair (geminate) recombination.

Note that the boundary condition (2.85) is essentially identical with the exact condition (2.52)
based on detailed kinetics when R, is identified with S. This boundary condition can be suitably
s incorporated by rewriting the time-dependent Debye~Smoluchowski equation (2.68) as

Ny
-S4V j = [yn8(R-S) = ayn-3(R - S), (2.884)

which uniquely identifies the strength of the sink as the speed of three-body recombination; for
I'y large compared with the rate of ionic transport, the reactivity of the sink is effectively instan-
tancous, and a is given then by (2.73); while (2.87) pertains when I'y is comparable with the ion
transport rate. No deactivating reaction implies zero I';, and hence zero rate of recombination.
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The number density N; of all ion pairs AB with internal separation R > § then decays at
a rate

- d(—f:‘ =-= f “ 4xREN+n~(R,1)dR = [4nS2l4n~(S, 1)  {F, — 4nS%(S—€,0)}] N*
&
= a(t) N*N-—F, N*, (2.8856)

where F, is the rate (s-!) of generation of negative ions at infinity, and « is the time-dependent
rate (cm3s ') of recombination appropriate to asymptotic ion densities N*. If the ion current
approaching § is absorbed by reaction within S, then lim,_,j(S —¢,!) — 0. In steady state, the
rate 4nR?j(R,t) from (2.88a) is constant for R > S+¢ and equals both the production and
absorption rates F, and 4r8%0'3n-, respectively, in (2.885).

In conclusion, this subsection has emphasized the decomposition of the recombination rate a
into its reaction and transport components, &ry and o, respectively, which act in series so that
a = .Prare in terms of the recombination probability #2; of (2.77d), and is determined by the
rate limiting step ar, or atr in the limit of low N and high N respectively. Also the rclation has
been developed between a and #; for the homogeneous case with the escape probability 2¢ of
ions generaicd within the medium. Steady-state recombination can therefore be regarded as
being maintained either by a continuous source in ions at infinity or by a source that generates
within the medium R-ion pairs with density (2.86). In the latter picture, the recombination
probability .#, is simply the probability 2. for contraction of those geminate R, ion pairs so
gencrated. Also proper contact has been established between the microscopic treatment and the
generalized Debye-Smoluchowski equation (2.88a) which blends the macroscopic phenomena
of diffusional-drift (which is characterized by the departure from pure classical ion-ion
trajectories to a zigzag statistical pattern) and reaction between individual ion pairs. The sink in
(2.884) is compressible in the sense that its radius S is determined by collisional kinetics, which
depends on the gas density N, as explicitly shown in § 4.2 where S is shown to contract from ca. R,
to ca. (R, A)} as N is incrcased.

2.5. Analytical solution of the time-dependent generalized Debye—Smoluchowski equation

FEquation /2.65) is frequently called by those interested in coagulation in colloid solutions the
Debye-Smoluchowski equation after the original authors who found its steady-state solution for
the field-free case (1" = 0) and acoulomb interaction respectively, appropriate to aninstantancous
sink (.#r -= lor I' - oo). While an exact time-dependent solution can be immediately obtained
in the field-free case, there has as yet been no exact solution obtained for a general interaction ¥V,
although a large body of literature cxists on various analytical approximations for the coulomb
interaction. These are based on Green functions, perturbation expansions, ‘ prescribed’ diffusion,
cte. (Mozumder 1968, Abell & Mozumder 1972, Abell ef al. 1972, Magee & Tayler 1972}, and
on the Mathieu equation (Hong & Noolandi 1978) via the resemblance between (2.65) for the
coulomb interaction and the Schrodinger equation with an R-*-potential. It may also, of course,
be solved by numerical procedures (Freed & Pedersen 1976).

The generalized equation (2.884) is of basic significance not only to ion-ion and atom-atem
reccombination in a gas and in dilute ionic solutions, but also to medical radiology and to diffusion-
and ficld-controlled reactions in metabolizing systems (as enzyme-substrate reactions ir a cell
(Reid 1952)). It is of general importance in theoretical physics In this section, we present an
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approximate yet accurate analytical time-dependent solution, and associated recombination
rates, of the equation

he Shg MREl SER Sl St el

n(R) 1@

= zisp (RY) (2.894)

with a general diffusional-drift current
. J(R,t) = Dexp (= V/kT)0[n(R,t)exp (V/kT)]/CR. (2.8956)
‘ - Our basic equation (2.50) derived from microscopic principles is, in effect, equivalent to (2.89)

solved subject to certain boundary conditions.
The boundary conditions are

n(R - oo,t) = N-exp(—V/kT), (2.90)

the Boltzmann distribution, for continuous generation of ions at infinity, and, either
n(R,t) =0, R<S, (2.914a)
for an instantaneous sink within a sphere of radius $, or
Tyn(S, 1) =j(S,1), (2.91)

for a partially absorbing sink where Iy is, as before, the speed of (three-body) reaction for ion
pairs brought to internal separation S by ion transport such that

ay = 4nST;. (2.91¢)
The initial (¢ = 0) distribution

\
| ! n(R,t = 0) = N-exp (= V/kT), (2.92)

is assumed Boltzmann. Two examples follow below.
(@) Field-free case, V = 0. Although the exact diffusion-controlled solution (¥ = 0) is known
_ (Reid 1952), being analogous to heat conduction through a sink, we include it here for use in the
1 case of general V(R). Introduce the dimensionless quantities

FL . r=R/S—1, 1 =Dt/§? (2.93)
and let n'(R,t) = (R/S)n(R,!), (2.94)
such that (2.89) with V' = 0 reduces to

g on'(r,1) [Or = O%n’(r, 7) JOr. (2.95)

r “ This equation can be solved directly by the method of Laplace transformation to give

- AR, 1) = N~{1 - (S/R) erfc [(R - §)/2(D)H]), (2.96)

appropriate to diffusion (d) controlled transport and spontaneous (s) reaction for an initial
random distribution N-, where the error function (or probability integral)

erfcy = %tf: exp (—x?) dx. (2.97)

The rate of recombination for this case (V = 0) is
alP(t) = 4nS%(S,0) /N~ = ag[1 +§/(rDN)Y], (2.984)
where aq = 4nSD (2.988)
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is the steady-state (¢ - c0) solution (2.72) obtained by Smoluchowski (1917) for coagulation in
colloid solutions and by Harper (1932) for ion—ion recombination in a gas. The rate of decrease
in the number A7, of diffusing species outside S can be evaluated directly from,

131:5 = N—% “’4nSRcrfc[(R—S)/2(Dt)i] dR = a’N-, (2.99)
s

where the derived af’ is identical with (2.98), as expected from (2.8942). Under the condition
(2.91 b) for finite (f) reaction and diffusive transport,

nP(R,t) = N-{1+ (afaq) (S/R) [exp (2Qx) exp x*erfc (y + 2) —erfc 2]},  (2.100)

where the time dependence is contained in

x(t) = (1 +ay/aq) (D)}/S = (ay/a) (DE)}/S, (2.101)
and in ) = (R-8)/2(De) 4, (2.102)
which vanishes at the sink, and a = azxaf(a;+aa) (2.103)

in terms of (2.91¢) and (2.99). When the rate a3 of reaction is much larger than the rate a4 of ion
transport, ¥ —> 00, @ = a4, the limiting rate, and (2.96) is recovered from (2.100). The time-
dependent recombination rate from the radiation condition (2.915) with (2.100) is

af(t) = aynP(S,t)/N- = a[1 + (a3/aq) exp x2erfc x], (2.104)

and a is therefore the steady-state (¢ -> o) solution (since erfc - 0). The rate (2.104) also follows
directly from 4182D(dnq/dR)g as expected from (2.915). At ¢t = 0 the recombination rate a{(0)
is simply the rate a, of reaction, as expected, since an initial ion distribution N - has been assumed.
Note that (2.98) for the instantaneous sink yields an infinite recombination rate, at ¢ = 0, again
as expected from the assumed infinite rate of reaction.

(b) General field V: The following analytical solution is based on the novel transformation
from R to the variable

R- {f:cxp[V(R)//cT]%l—fi—l; g% - (%)aexp(V/kT), (2.105)

a transformation not without its physical significance. It is rclated to the probability %, in
(2.77a) that an R,-ion pair will further contract by diffusion under V, in the presence of an
instantaneous sink at S (or clse to the diffusional expansion against I to infinite separation), i.c.
(2.77a) is rewritten with the aid of (2.105) as

28Ry, S) = R(S)/R(R,) = 3/R,, (2.106)
Let ny(R,t) = n(R,t)exp (V/kT), (2.107)
such that (2.89) becomes C_n,_gtM = g%[k’?n—';%-—’l)], (2.108)

where the transformed diffusion coefficient (cm?s-1) is

D = D(dR/dR)*. (2.109)
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The form of this equation is, in the transformed R-representation, identical with that for the
field-free case in the original R-representation. Accordingly, introduce scaled quantities (2.93) and

F=(RI8)-1, 7=Dt/82 n' = (R/8)n,(R1) (2.110)
such that (2.108) reduces to
(1)  (dF\toW'(7,7) ' ([(dF\tdr|on’
or (dr) o ort {((_i_r) aF}-a—r (2.111a)

which suggests the following two procedures for solution. Assume (d7/dr) remains constant such
that introduction of ¥ of (2.110) yiclds

on'(7,7) On'(7,7)

= (2.1115)
which is the field-free diffusion equation in #, 7-space. Altematively, since
d7\2d% 2R 0
(d_r) d_f==‘s[m exp (V/KT) - % gﬁ(V/kT)] (2.112)

in the right-hand side of (2.111 4) vanishes to O(R~%) for the Coulomb interaction and is negligible
for R® > R%, = S(e3/kT)3,
on'(r,7) _ O'(r,7)
cr ore

(2.111¢)

the one-dimensional diffusion equation in r, 7-space.
The full solution of (2.88) appropriate to spontaneous reaction (2.91a) is therefore, after some
analysis, of (2.1115),

) (R-8)dR
(8) = - - 1—— bvr-veurs 1150 .
n®(R,t) = N-exp( V//cT){ Rcrfc[2(Dt)idR“ (2.113)
The recombination rate then reduces to
. - S2exp[ - V(S)/kT]
®(1) = 4rS%(S, 8) /N~ = e | 1 P } .
a(t) = 4m8%(S, )/ a4 S(nDt (2.114)
where the steady-state transport rate
«w = 418D = 4nDR,/P(S) = ay, (2.115)
with P(S) = R/S = R f exp (V/KT) . (2.116)

in terms of the natural length ¢2/kT as in (2.56). Under the condition of equilibrium with the
field when the Einstein relation written as DR, = Ke holds, the steady-state solution is, for a

coulombic attraction = 4nKe/[1 —exp (- R./S)], (2.117)

as previously obtained by Bates (1975) via the steady-state analysis of an instantaneous sink,
leading to (2.73). The present paper represents the first time, to the author’s knowledge, that the
transient solutions (2.113) and (2.114) for instantancous reaction in the presence of a general
field have been obtained. Since constant (dR/dR) is assumed in (2.1115), (R-15) (dR/dR) can
be replaced by R - § which yields a result also obtained via (2.111¢).

The boundary condition (2.91 ) for finite reaction under a field is

Iy(S)n=(8,t) = Dexp[ - V(S)/kT){0[n(R, 1) cxp (- V'/kT)]/CR), (2.118)
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which for (2.1115) and (2.111¢) transforms as

[aanr] (a:) n'(0,4) (2.119a)
and
(], - (&) () 700 = () [fewvsrar]won  @uon
respectively, where
orn = 482 exp (= V(S)/kT), a = (rnir)/(en +oter) (2.120)

are the reaction and recombination rates, as before.

Hence, after exercising due care, we obtain for a general interaction the full time-dependent
solution obtained from Laplace transformation of (2.1115) subject to boundary conditions (2.90)
and (2.119a), and to the Boltzmann initial condition (2.92):

n(R,t) = N~exp (— V/kT){1 + (a/a,) (S/R) [exp (292%) exp 32 erfc (¥ + ) —erfc 2]}, (2.121a)
where ) = (1 +ag/a,) (D1)1/S, (2.1215)

Q@) = (R-8)/2(Dot, (2.121¢)
in terms of (2.105) and (2.109). Solution of (2.111¢) subject to (2.1195) also yields (2.121a) but
with D evaluated at S, and with @ replaced by Q of (2.102), which are essentially equivalent

since constant dR/dR is basic to both methods.
The full time-dependent recombination rate now follows from (2.1214) as

a(t) = agn=(S,t)/N- = a[l + (arn/ar) exp 3Eerfc Xs], (2.122q)
where @(R = §)in (2.121¢) vanishes, {in (2.1215) is, with the aid of (2.105), (2.109) and (2.121),

s = (1+"‘"') PO o [V(S)/KT] [sf cxp(V/kT)R"dR] (2.1225)

at §. For the field-free case (V = 0), (2.121) and (2.122) reduce to the diffusion-controlled
results (2.100) and (2.104), respectively. Expressions (2.120) and (2.122) are the analytical time-
dependent densities and rates obtained from (2.89) for an arbitrary spherical field V(R) for an
initial Boltzmann distribution, and are accurate where (d#/dr) can be assumed constant in

(2.111a).
As ¢ increases from zero,
expxterfcx > 1~ (2/Jr) x+x*— (4/3{x) x> +... (2.123)
such that
alt > 0) = ay, 1—%“"("‘ exp[V(S)/kT) [sj exp (V/kT) R- ’dR] } (2.124)

decreases initially from the reaction rate a,,. As ¢ - oo,
expxterfcx - (1/xyx) (1—-1/2x3+3/4x...), (2.125)

such that the long-time dependence is

a(t - o) = a‘l +::'s exp [(n DV'(SV k7] [s f p(V/kT) R-’dR“. (2.126)
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The transient rates (2.124) and (2.128) for short and long intervals of time are best observed at
high gas densities when a,, > a,, * « respectively. The full transient densities (2.121) and
rates (2.122) are of basic significance to all diffusion-drift phenomena in gases or dilute solutions,
such as ion-ion, ion-atom and atom-atom recombination in dense gases, or coagulation of
colloids in ionic solutions.

30

20
T
1
<
e
10
0
-1

lg (D1/S?)

Figure 1. Explicit time dependence of recombination rate () at various gas densities NV (in multiples of the
Loschmidts number Ny, =2.69 x 10" cm-? at s.t.p.). Characteristic times (§2/D) for diffusion are (186, 11, 8,
5, 3)x 10-125 for N/N, = 1, 2, 3, 5, 10 respectively.

The full time dependence in (2.1224) for a is contained in (2.1225) for xg which, for a pure
coulomb attraction, varies as

Xs(1) = (1 +app/ay) TH(R,/S) [exp (R,/S) —1]7, (2.127)
where the scaled time is T =t/(8§%/D) (2.128)

where $2/D is the approximate time required for an ion to diffuse from the boundary to the centre
of the sink.

With the aid of a simple expression, (4.12a), and associated quantities, derived in § 4.2 for the
reaction rate %rn, and the exact expression (2.63) or (2.71) for the transport rate, the full time
dependence of the recombination rate (2.122a) can be explored. Figure 1 illustrates the variation
of «(t) with ¢ for several values (1, 2, 3, 5, and 10) of the gas density ¥ (in multiples of ¥, = 2.69
x 101 cm-3, the number density ats.t.p.). These rates are appropriate to a fictitious (but repre-
sentative) case of equal masses (M = 16a.m.u.) of the ionic species with mobility 2cm2V-ts-1
in an cqual-mass gas and with 8, in (4.17) taken as 0.6 (Flannery 1978). Figure 1 exposes features
of hasic significance to the physics of recombination.

Since the initial ion distribution is assumed to be in Boltzmann equilibrium, the initial rate of
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recombination & (¢ = 0) is simply the reaction rate a,,, in accord with (2.124). The ions then begin
their transport and replace the reacted ions within a time $2/D. Since the recombination is
determined by the rate-limiting step of reaction and transport, its variation with time is best
observed at high gas densities N where a,p > ar such that « decreases from a,n to ayr, the steady-
state limit at ¢ > $2/D. Variation of « with ¢ for N x 10, for example, reflects the change in a
from reaction controlled transport. The reaction rate at high N (2 5M,,) is so large because the
radial extent § of the sink becomes so contracted that the Boltzmann distribution of ions at its
boundary is locally very large and offsets the inherent reduction in cross section. For N ~ N|,
and lower, the transport is always faster than the reaction such that the reaction rate limits the
rate of recombination at all times, and a straight-line dependence is observed as in figurc 1. The
steady-state limit is, of course, independent of any initial condition adopted.

Measurement of the variation of a with ¢ at high ¥(Z N,) would, therefore provide valuable
information about the physics intrinsic to recombination, i.e. of the transport component at
t> $2/D and, more significantly, of the reaction component at high densities when ¢ < §2/D.
Such experiments are feasible with modern techniques such as laser spectroscopy. In figure 1 arc
indicated relevant time-scales. The radii S of the sinks are compressible (§4.2) as N is raised,
and the unit of time (§2/D) varies from 1.6 x 10~!!s at a gas pressure of about 1 atm to 3 x 10125
atca. 10atm. The laser can be tuned to some known molecular rotational or vibrational transition
since electronic transitions are precluded because of the time-scale. The ion densities can then be
determined by fluorescence.

Figure 1 is, thercfore, a striking illustration of the transition in recombination from reaction
alone to the limiting step of reaction or transport. Verification is feasible, not only by laboratory
experiment but also by Monte-Carlo computer experiments such as those of Bates (1980¢) and of
Bardsley & Wadehra (1980), suitably generalized to include explicit time dependence.

The basic equation (2.89) can be written to incorporate both the condition (2.915) for a
finite rate a,, of reaction and the possibility of a scavenger reaction proceeding in parallel at a
rate yn, by

-

—5+V-j—yn=T'snd(R-S). (2.129)

By Laplace transformation, we can show that the time-dependent solutions are given by
nexp (—yt) and aexp ( —yt), with n and a given by (2.121a) and (2.122a), respectively.

Finally, transient solutions of (2.129) appropriate to other initial conditions are important,
for example where intense jonization is deposited into or produced within a localized system
either by a high energy beam of particles or by radiation such that many ions may diffusc out of
the localized system before neutralization occurs. The rate of disappearance of ion-ion or
electron-ion pairs scattered along the track of the ionization beam is time-dependent and is given
by the appropriate solution of (2.129) applicable to ‘columnar’ recombination rather than
‘volume’ recombination as discussed here.

When .4 ions are generated instantaneously by a spherical surface source at distance R, from
the central positive ion, i.c. Ry-ion pairs are produced, (2.89) is solved subject to

n(R,t = 0) =4 exp(—V/kT)8(R-R,)/4nR2,
J(8,0) = I'sn(S,1), (2.130)
n(R - oo,t) = 0.

Lo .
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For the field-free case (¥ = 0), by analogy with the corresponding problem in heat conduction
(Carslaw & Yeager 1959), the solution can be written in terms of the quantities x and 2 associated
with a continuous source at infinity as

N
(R, RoS) = e |75 19XP (~ 20) + exp (- O] - 2xexp x*exp 22, xere (x-+.2),
(2.131)
where Q,=(R-R)/2(Dt)}, Q, = (R+R,—2S5)/2(Dt)i (2.132)
are similar to (2.102), and x(8) = (1 +ag/ay) (De)t/S, (2.133)

as before (equation (2.101)) in termsof (2.91¢) and (2.99). If the ions are generated at the reaction
surface, Ry = Sand £, = 2,. The volume external to the spherical surface of the sink is ¥” so that
the frequency (s~!) of recombination is then

vet) = — f (a”)dk = 4nS*Tyn(S,t; R, = §)

N
= [#T/(4DOY] [2/r— 2x (1) exp xPerfe ]
= — [#'T,/(4D1)i} d(eX erfe x) /dyx (2.134)

The initial frequency v,(0) is A4 T3/ (rDt)}, and as ¢ - oo, vy — zero as v,(0)/2x% The total
number of ions that have recombined after time ¢ is
(2/yr P Nx, t—>0,

t
i) = [ vty dt = 2AT1 - exp i) exfe (] > | o e (2.135)
where the probability of recombination in the absence of the field V is
P(V>0) = ay/(as+ag) (2.136)

and remains less than unity in the presence of outward diffusion.
For a general field V(R), the general solution appropriate to (2.130) is obtained by use of
transformation (2.105) and of (2.111¢) to yield.

N -V/kT
oxp (LT (%) D)4 [ fexp (- 20

+exp (—21)] ~ 2¥sexp ¥ exp 22, yserfc (s + 1)1, (2.137)

n(R,t; Ry, S) =

in terms of the corresponding tilde quantities (2.105) and (2.1225). For a coincident sourcc
and sink, the recombination frequency is

ve(t) = [#Ty/(4Dt)3][2/r — 2)5(¢) exp & erfe {s) exp (- V(S) /kT), (2.138)
where ¥y is given by (2.1226). The number of recombined pairs after time ¢ is
He(t) = P N1 —exp Vierfc Xg), (2.139)
where the probability of recombination in the presence of general 1, in terms of the reaction and
transport rates rq and ay, respectively, is
Pr = rn/ (@i + %rn), (2.140)

as before (equation (2.77d)). Thus .2, is controlled by the relative rates of reaction and transport.
At low N, ¢ - 2en/2¢ while at high N, .#; > 1. Expressions (2.121a), (2.122a), (2.137) and
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(2.138) represent the first time that analytical solutions of the Debye-Smoluchowski equation
subject to conditions (2.90)-(2.92) and (2.130), respectively, have been developed for any
(general) interaction V(R).

The above analysis has therefore shown that the same key quantities appear in two distinct
time-dependent problems: homogeneous recombination where the process is driven by a source
operating continuously at infinity; and geminate recombination where the process is initially
established by an instantaneous source of ion pairs within the medium (as produced by a lascr
burst) and is controlled by the relative reaction and transport rates.

Fer *ntense ionization, the interaction between the ions can no longer be assumed ab-initio to
be pure coulc.ab. The interaction ¥ must then be determined by self-consistent (with the
recombination) methods as developed in § 4.

Competition between the increased number of sinks (assumed equivalent) for the flux incident
from infinity is acknowledged by the last term of the following equation:

(R, 1) [0t = V- F,p - [ypd(R~S) —a(t) (p(t))sp(R, 1), R > S, (2.141)
for the concentration p in cm~®of R-ion pairs such that pdR is the concentration of ion pairs with
internal separation R in the interval dR about R. In (2.141) the density of unreacted ion pairs
(withR > §) is ©
eWs = [ pRdR = [~ snRep(R,)dR, (2.142)
and the inward diffusional-drift operator Hris given by (2.45) since we assume in addition that
the diffusion coefficient D remains constant. Substitute

PR, 1) =C(1)g(R, 1) (2.143)

AC(1) /8t = —alg(t))s C¥(1), (2.144)

such that the probability density or pair correlation function g(R, ¢) satisfies the usual Debye-
Smoluchowski equation,

in (2.141) where C satisfies

g/t = V. F,g—Tyg8(R-S) (2.145)
for an isolated sink surrounding a positive ion (say).
t
Thus cl) =G, / [1 +G, J' a(t) (g(t))sdt], (2.148)
)

where C, is the initial concentration of ion pairs, describes the time decay of all ion pairs via
recombination, and g(R, ¢) describes the spatial distribution of R-ion pairs. The recombination
rate

- _ a(t) = -aclt[ J' : 4R p(R, 1) dR] /N+N—, (2.147)
therelore satishes
a(t) {1 — ((g(t))§ C*(t)/ N*N-)} = ay(t) C(t) / N* (2.148)

where z, is the rate that is obtained from appropriate solution of (2.145) for an isolated sink (or
constant C). When the initial concentration C, and the recombination time ¢ are sufficiently
small that

f (1)gdt < 1, (2.149)

and C(¢) remains constant x~ Nt then equations (2.147) and (2.148) reduce to the case of an
isolated sink with associated rate a,.
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3. ‘GENERALIZED QUASI-EQUILIBRIUM’, STEADY-STATE METHOD
FOR THE REACTION AND TRANSPORT RATES

Rather than from the complete determination of a via solutions of (2.20) inserted in (2.52),
or alternatively in (2.59) via a, of (2.44), intrinsic physics may yet be uncovered from the solution
of (2.43) with (2.44) modified by a procedure suggested by (2.35): either neglect upward
transitions ky,; or, in effect, rewrite the energy-change frequency terms on the right-hand side of
(2.47a), with the aid of the null-collision relation (2.41), as

C C C
Nz“f m-zwwzmmﬁ (3.1)
-V t=-—-M

i=-E

where v(R) is some averaged collision frequency vq/A in terms of a mean free path A. With the aid
of (2.48), (2.53) and of relation (2.10), (2.50) in this approximation yields,

min(R, Rg)
snrop [ r) WIH| —amynmy an [T MRIAR)RAR,  (3.20)
0
‘~¥DPMM,R<RE (3.25)
F.(Rg), aconstant, R > R, (3.2¢)

in which the speed v4 used for ion pairs within the collisional sink that extends to Ry, is assumed
to be mainly controlled by the speed D/R (cf. Flannery 1976) of inward diffusion due to the effect
of the sink on the ion distribution. By use of an integrating factor exp (V/kT—R/A), (3.2b) is
solved to yield
n(R) exp (V/kT)exp (— R/2) = n(Rg) exp[V(Rg) /kT]exp (— Rg/A) (3.3)
for R < Rg. For R > Ry when the sink exerts a constant effect, the right-hand side of (3.2¢) is
constant so that the constant flux solution (2.58a) applies. Hence, continuity at Rg requires
n(R) {exp[V(R)/kT]exp (Rg— R) /A +[P(Rg)/an) 23(R)} = N, R < R, (3.4)

where the constant lux F, in (3.2¢) is equivalent to a4(R) n(R) for R > Rg. The overall recombi-
nation coefficient is,

! {a(Rg) expl = V(Ry) /K T]} 2/ P(Ry)
@ = g=lo(Re) n(Re)] = g S b 1= ViRy)/KT] + 2/ P(Ry) (3.5)

as before. Since an varies as N-1, at low densities (and for small R), when the second term in
the right-hand side of (3.4) can be neglected in comparison with the first,

n(R) = N-exp[=V(R)/kT]exp (R—Ry)/A, R <Ry
= ny(R) exp (R—Rp)/A. (3.6)
Hence (3.2q) yields

ay(Ry) ng(Rg) = 47“ N-exp/( —RE/A)f:Evd exp[ = V(R)/kT])exp (R/A) R2dR.  (3.7)

The speed vqexp (— V/kT) appropriate to the distribution (3.6) is taken as approximately
its thermal value (v) corresponding to energies greater than — E. Hence, at low densities,

as(Rg) exp[ - V(Rg)[kT] = (4r¢v)/A%) {[2 — 2(Ry/A) + (R/A)®] - Zexp (- Ryx/A)}  (3.8)
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which, in the low density limit, reduces to

4n R},

as(Re) exp[ - V(Ry) KT] = S EED [ _ 4R /) 4 85 (RN = cha(Re/ 2+, (3.9)

which exhibits an N-variation (A ~ N-1) similar to the low density limit of the expression of
Thomson (1924). At low densities a), > a,, so that the actual recombination coefficient is

low N
. ) a — ay(R,)exp[ = V(R,) [kT] = ay, (3.10)
the reaction rate.
At high gas densities a3 > ax such that the actual recombination coefficient (3.5) approaches
the limit,
high ¥
a—> ay/P(R) = a,, (3.11)
the transport rate. Hence, this procedure has shown again that
& = arn2ee/(Xen + Atr) (3.12)
a is limited by either the transport or the reaction rates whose variation with N is contained in
(3.9)-(3.11). !
The above simplified model, designed to reproduce the result of a detailed history of energy ]

changes in ion pairs via ion-neutral collisions in a dense gas (which can be established) suggests
introduction of phenomenological ion and ion-pai. densities

E #(R) = n(R) exp (s/A), F(R) = N(R)exp (s/A), (3.13) ‘

[ |
where s is the radial length Rg — R from some radius Rg within which energy-changing collisions ]
are effective.t Hence, (3.258) with T replaced by T yields, )

da(R) . ., O(V/KT) _ .

S AR SR =0, (3.14) ;

()] which can be solved to yield, 1
(, )

n(R) = N-exp(~V/kT)exp(—s/A) = 3 m(R,E), R< Ry, (3.15) f

= -V 9

where ny(R, E,) satisfies the system of equations (2.20) that describe microscopic events. When the
effect of the sink operating in the (- M - — V) range of energy levels is small, the right-hand
- side of (2.20) can be taken as approximately zero such that solution of the left-hand side set to {
zero yields the Maxwell-Boltzmann distribution ny(R, E,) in (2.14) for ions in thermodynamic
cquilibrium. When n, is summed over all E), or integrated over all v; as in (2.9) the Boltzmann
term in (3.15) is obtained. Provided that the effect of the sink is small for ion pairs with internal
cnergy greater than — E, an iterative solution can be proposed by assuming the left-hand side of

(2.20) to be zero, as if in full equilibrium, and then including the sink to first order by solving the )
equation
R ¢ r C
f dRN! R, E) ¥ ky(R) =f dR ¥ NFR,E)ky(R), (3.186)
] t-~- Vv 0 t=-M(R)

which follows from (2.20). Since the Ei- or vi-averaged effect of the left-hand side of (2.20) is
» measured by Zn(R) on the left-hand side of (2.47) and hence, in the approximation (3.24) basic

t In this sense Thomson (1924) displayed remarkable intuition in his concept of a trapping radius, a concept .
fullv exploited in §2.4, §2.5 and §4.2 in the form of sinks compressible with V. 9
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to this section, by 7 of (3.13), the small departures of the left-hand side of (2.20) from zero can be
reintroduced by replacing N in (3.16) by the fictitious densities

R\(R,E) = N¥(R, E)) exp (s/A). (3.17)

Provided the level —E is sufficiently high that departures from thermodynamic equilibrium
are indeed small, and yet is sufficiently low in the bound spectrum that »;(R) on the left-hand
side of (2.20) does not depart appreciably from zero, its value at the turning points, it follows
that densities of bound io.i-pairs with E; < — E can still be obtained from (3.16); and replacement
of Nt by N, will minimize any error in the original assumption.

The recombination coefficient a; associated with negative ion density n(R) is therefore, in this
approximation,

N (Re ¢ -E c
as(Be) = gg=[ Cexp(—s/NdR T |RRE) T klR)- T BRE)k(R)],
(3.18)

and the overall recombination coefficient appropriate to the R-asymptotic density N~ can then
be obtained from (2.52) directly or from (2.59).

In the limit of low gas densities N, and low ion densities N*, departures from thermodynamic
equilibrium are indeed small, @ - a3 and A - oo such that (3.18), on reordering integrations,
can be rewritten as,

N ¢
a(-B) = ag=, 2, [ 2, [ MR E) (R AR- T [ N2 R E) k(R OR], (2.19)
1= t= -D

_F t=-8
where — D is the lowest bound level of the system, — S is the stabilization level of energy — Eg,
and Ry = min[R(E;), R(E;)], the minimum of the outermost turning points associated with
levels E; (bound and continuous) and E; (bound) respectively. Since (0 > R_,) defines the full
range accessible classically, i.e.

By
N(E) hulE, E)Y = [ N2 (R, E) k(R B, E) aR, (3.20)
for kit given previously (Flannery 1980, 1981a) we have
low ¥ N
s ay(~E) = og=, E, [ME) T Gd- T NMEIGS|, @2

where the ion-pair number density in the classical accessible region is,
R(E)
N(E) = [ NrR E) IR (3.22)
0
which, with the aid of (3.16) with integrations reordered, and of (3.20), satisfies
C C
N(E) T ki) = I M(E) k. (3.23)

Equations (3.21) and (3.23) are identical with those originally introduced by Bates & MofTett
(1966) and by Bates & Flannery (1968) in their effectively exact quasi-equilibrium treatment of
the low density limit of ion-ion recombination. Because of this, and of the constant flux assump-
tion implicit in (3.2¢), the method represented by (3.16)-(3.18) and (2.59) is designated as the
‘generalized-quasi-equilibrium-distribution’ steady-state method to remind us of the under-
lying assumptions.

D WS
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4. THEORY OF ION—ION RECOMBINATION AS A FUNCTION OF ION DENSITY

All previous theoretical and experimental studies of ion-ion recombination pertain to a dilute
degree of ionization with ion densities Nt ~ 10®cm-3 for which a coulombic ion—ion interaction
is correct. Ion—ion recombination plays a key role (Flannery 1979) in populating the upper laser
electronic levels of rare gas-halide systems which operate not only at high gas pressure (~10atm)
but also at relatively high ion densities 10!2 < N+ < 10 cm=3. In § 4.1 is developed a theory for
the variation of @ with Nt. A useful procedure proposed in § 4.2 for the rapid evaluation of the
reaction rate arn permits illustration of the variation of a with gas density N.

4.1. General theory

The interaction V between the positive and negative ions can no longer be assumed, ab initio,
to be pure coulomb, but depends on the increased screening due to the other ions via their net
charge-density distribution which, in turn, is coupled self-consistently to the recombination sink
via a which contains an explicit dependence on V. Repulsion between like ions also becomes
important. The interaction V between the ions is determined by appropriate solution of Poisson’s

equation Vi V(R) = (4net/e) [n*(R) —n—(R)], (4.1)

where the local positive and negative ion densities are n%(R), and ¢ is the dielectric constant
1 + 4nNp of a gas with polarizability p and density N. For Xe, € = (1+1.410-3N/N,), in effect
unity for N < 25(Ny, the number density (2.69 x 101° cm-3) at s.t.p.). In the steady-state linit
when few unreacted ions are within the recombination sink measured by R of §2, the net
inward flux (in s!) of positive ions towards the central positive ion is

+ +
8 2]

where D* and K* are the relative quantities 2D, and 2K, in terms of the diffusion coefficient D,
and mobility X, for a positive ion 1. The net inward flux of negative ions 2 towards a positive ion

Fi*(R) = —41:R’[ p+<t (4.2)

1is, -
Fi*(R) = 4nR? [Dd—'i“(zﬂ Rk gg] (4.3)

where D and X are the relative diffusion coefficients (D, + D,) and relative mobilities (X, + K,) for
ions 1 and 2. In the referencc frame of the central positive ions, assumed stationary, F},* vanishes,
and integration of (4.2) yields the Boltzmann distribution

n*(R) = N*exp[V{R)/kT), (4.4)

where T is given by Ter in (2.57) when the Einstein relation no longer holds. Hence, Poisson’s
equation for spherical distributions is

1%2%(’* aZ) (4'“2){”*""*’["( )/KT]=n"(R)}. (4.5)

Fora single isolated sink, the steady-state density n~(R) of negative ions is given by (2.64), and

VikT
()(/ )] ﬁ{exp[V(R)/kT]—[ 0:.1;(::]"""[ V(R)/kT]}, (4.8)

where the ‘screening’ distance is

R= R [R’

Ry = (8rNtR, /€)1, (4.7)
31-2
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The R-variation of the right-hand side of (4.6) is given explicitly by V(R) and P(R) and
the interaction is contained implicitly within the recombination probability,

afay, = arn(Rg)/[2en(Ry) +are(Ry)], (4.8)

from (2.62), where a,q is the reaction rate (2.61), i.c. the recombination coefficient that would
pertain provided a Boltzmann distribution of ions (with no net transport) were maintained as at
low gas densities N, and a.r is the transport rate (2.63), i.e. the recombination coefficient that
pertains for instantaneous reaction within Ry, as at high N. If an analytic expression for a,, is
known in terms of V, as in § 4.2, then a self consistent ¥ can be obtained from (4.6) with (4.8),
since 2 is given in terms of V by the analytical expression (2.63). Otherwise, (4.5) must be
coupled to the solution of

dn-(R) _, . KiV
ar tv Ry

4nR? [D ] = 4nR3D{exp (- V/k T)%[n—(li) exp (V/kT)]

= o3(R)n~(R) = aN- (4.9)
for n~(R), where the right-hand side of (4.9) is given by (2.50) in terms of the phase-space densities
ni(R, Ey) determined from (2.20) with collisional rates ki¢(R), which in turn depend on V.

Hence the general theory involves the coupled solutions of the Poisson equation (4.5), of the
flux equation (4.9), and of the Boltzmann equation (2.20), i.e. the interaction V is solved self-
consistently with the recombination. Application of this general theory represents a formidable
but yet a feasible task with the aid of new theoretical procedures for the solution of (2.20) for the
phase-space densities ny(R, E;).

Note that it is only a,(R) that depends on explicit knowledge of n,(R, E;) so that, provided the
rate a,, of reaction can be provided analytically by alternative procedures, the above prescription
reduces to the solution of (4.8) with (4.8). The term 1 — («/ar) [P(R) /P(Rg)], which depends on
V, N and R, on the right-hand side of (4.6), tends to unity at low N for all R, and increases at
high N, from zero at R ~ R, to unity as R - 0. As Ry - co for no plasma sheathing, solution of
(4.8) is pure coulomb so that a (first) iterative solution valid for low N+ (large R,) and high N in
the vicinity of R;; is

ValR) _ R, 1 (R 3

T = E+ﬁ E) Cxp(-—Re/RE)f RE$R<R5, (410)

where R, is the natural unit (¢2/kT) of length. High-order iterations may be obtained. This
interaction (4.10) is pure coulomb for R < R, as at high N, or else, for R® < 12R, R}, i.c. when
NegL10¥ecm2atR <R,
To facilitate numerical solution, equation (4.6) may be decomposed into three coupled first-
order differential equations,
do,/dr = v,(r),
duy/dr = — (2/r) vy(r) + (1/2r}) [exp vy (r) —vy(r) exp - vy(r)], (4.11a)
dvy/dr = (a/an) expuy(r)/r?,
where all distances 7 = R/R, are expressed in natural units, v, = V/kT, and v, is the fractional
departure n=/N-exp (— V/kT) of the ion density from Boltzmann equilibrium. The first two
coupled equations are equivalent to the Poisson equation (4.5), and the third equation represents
diffusional drift (equation (4.9)).
When 1, € 1 as at large r, the exponentials in (4.11a) may be linearized to provide

vy 1 —afayr (4.115)

PP |
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so that the consistent and appropriate solution of the Poisson equation
1d%(r,) 1 .ﬁ.l.)
e _r-f(v‘+ahr , (4.11¢)
. V1 1a a/ay
is v,(7) _W_-—;(l—éa—h)exp(—r/r,)—- T (4.114d)
which yields the coulomb attraction (C) for r < r,.
Atlow N, v, = ~(1/r)exp(—=r/r,), (4.11¢)
the Debye-Hiickel interaction D.H. (cf. McDaniel 1964), while at large N when a > an,
v > — (1/2r)[1 +exp (-7r/r})] (4.11f)

the mean of C and D.H. For intermediate N, v, contains various mixtures of C and D.H.

Direct numerical inward solution of (4.11a) subject to (4.114) and (4.1t d) as initial conditions
at large r shows that (4.114) remains an excellent solution by reproducing the actual numerical
results to within 29 for all r > 0.1, for a/an between zero and unity and for Nt < 103cm-3, As
a/xn decreases from unity the accuracy becomes even better.

The criterionv, < 1issatisfied at7 ~ 1(theimportantregion atlow N) and at small a/ay when
s > 1 which with (4.7), implies that 4xRIN+ = }r, > 1. Many ions are then present within the
Ry-sphere, and N+ € 2 x 10" cm-3,

As N increases, the extent R of the reaction sink decreases as (R,/N)t (see §4.2), such that
(4.11f) is pure coulomb at R, in the high N-limit. For lower N, the situation is not as clear,
without resort to explicit knowledge of the rate a of reaction.

4.2. Simplified method for reaction rate

Rather than solving the Boltzmann equation (2.20) directly for the phase-space densities
ni(R, E;) and hence xrn from (2.50), let us adopt a procedure based on the analysis in § 2.4 of the
finite reaction rate arn within a collisional sink of radial extent §. Since the X+ and Y- ions
(1 = 1,2) have in general different mean free paths A; in the gas Z and since both ions have
different sink radii R;, the expression (2.84) or (2.91¢) for the rate of reaction within S is therefore
generalized to give

arn(Ry, Re) = n[RIW(X,) C,E, + RRW(X,) G E,— RE, W(Y,) W(F,) G) (vyy),  (4.12a)

where (v,,) is some averaged ion-ion thermal or transport speed of approach, and where the
probability for an ion i-neutral Z collision for ion pairs with internal separation R < R, increases
with gas density to unity as (Loeb 1955)

W(X) =1-(1/2X) {1 —exp (-2X,) (1 +2X))], X, = A/R;, (4.125)
for a straight-line trajectory. Since 2, pertains to a Boltzmann distribution, the factor
E.’ = cxp[— V(R""I‘i)/kT], (4.12()

in (4.12a) acknowledges the Boltzmann enhancement of the ion density N - due to the field at
R, + A; at which the last ineffective ion-neutral collision occurs just before the ion enters the
recombination sink within R,. The factor

2 RV
C‘ = l+-3T7-.. " a—RdR, (4|2d)
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acknowledges the focusing cffect of the interaction on the assumed straight-line trajectory
between R;+A; and R, in the cross section nR%. The smaller of R, and R, is R, such that
W(Y,) W(Y,), with Y; = A;/R,,, is the probability of simultancous ion—neutral collisions within
R_, a probability counted twice by the sum of the first two terms of (4.124). Simple geometric
arguments show that G in (4.12a) is equal to either C, E, or C E, depending on whether Ry, is
equal to R, or R,, respectively.
The trapping radii R; may now be deduced from simple kinematical considerations. The
kinetic energy of (1, 2) relative motion before the i-Z collision is
Ri+Ad YV

rn OR

since the ions on average arc uninterrupted by collision only for separations between R, + A, and
R;, within which the acceleration due to the field is effective. Ion pairs upon collision with Z
become incapable of expanding outwards from R, to R; + A, provided their kinetic energy T, after
collision is barely sufficient for provision of the energy required to increase R; to R; + A; against
the force of attraction, i.e. when R+ AQY
<[ R

T, = 3T+ dR, (4.13)

(4.14)

We can show (Flannery 1978) from the full expression (Bates & Flannery 1968) for the energy
change that, to a good approximation,

T, =T, (1+3), (4.15)
where ¢ is a parameter depending only on the masses M, of the interacting species. Here we
simply adopt & as a convenient collision parameter chosen to normalize the low-density limit of
the expression (4.12a) for ary to the exact quasi-equilibrium results of Bates & Flannery (1968).
Thus, the stabilization criteria (4.14) with (4.13) yields

V(R +A;) - V(R,) = 3kT/8,, (4.16)

to be solved for the trapping radii R; associated with mean free paths A; and collision parameters d;.

In this strong-collision model, (4.16) provides a valuable relation satisfied by the general
interaction V at two points. Solution of (4.18) for a pure coulomb attraction is
dtRT’ as N 0,
(8:Ry2)4, as N - oo,
which decreases monotonically as A; decreases from infinity and which is constrained by (4.16)
to satisfy R,(R,+ A;) = 8,A; Ry, where Ry is the Thomson trapping radius 2¢2/3k 7. The sink
is therefore compressible with N, as in the model of Natanson (1959).

At low gas densitics the reaction rate

R = A1 + 48Ry /A - 1] » { (4.17)

Zpg > Cy8fagy + Gy Sfany, (4.18)
where C,, by (4.16),is 1 + 68, and
ar = $nRY (nied /A, (4.19)
is the Thomson partial recombination coefficient (1.3). The ratio
Ay = Age (N~ 0) /o, (4.20)

of the exact low density limits 2, , as given by the quasi-equilibrium theory of Bates & Flannery
(1968), has been provided (Flannery 19814) for an extensive range of physical systems repre-

sented by
X++Y-+Z > [XY] +2, (4.21)
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where energy-change transitions occur via elastic ion-neutral collisions. Also, the #,.; have been
provided (Flannery 1980) for a wide range of systems rcpresented by

X++Y-+X > [XY] +X, (4.22)
where in addition to an elastic (Y--X) encounter a symmetrical resonance charge transfer
encounter occurs, or by

X++Y-+Y > [XY]+Y. (4.23)
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Figure 2. Recombination rate coefficient a at 300 K for Ke*-F- in rare gases (Ne, Ar, Kr, Xe) as a function of
gas density N (in multiples of the Loschmidt number density Ny = 2.69 x 10" at s.t.p.). ——: Present treat-
ment; x, O: universal Monte-Carlo (hard-sphere) plot (Bates 19805) for Ar and Ne, respectively; 0: Monte-
Carlo (polarization) results (Morgan ¢t al. 1980) for Ar.

With this knowledge, the collision parameters 8; may now be uniquely determined by solution of

81+81-Ry =0, (4.24)

and arq of (4.124) tends therefore at low N to the exact quasi-equilibrium values (Flannery

1980, 1981 4). This model of the reaction rate acknowledges the decrease in survival probability

due to diffusion for ion-neutral collisions within the R,-trapping spheres, and, with the inclusion

of the quasi-equilibrium 8;, is the ‘strong-collision’ analogue to the microscopic method provided
in § 3. The strong-collision parameter &; is, in general, a function of ion-density Nt.

4.3. Results for [(Kr* —F-) + M] recombination

For a pure coulomb interaction associated with dilute ionization, the collision parameters 8,
have been given (Flannery 1981 §) for various combinations of rare gas (He*, Ne+, Art, Kr+, Xe+)
and halide (F-, Cl-) ions in a parent or unlike background gas M. In figure 2 are illustrated the

variations of the rate
@ = arnaee/(@rn +ar) (4.25)
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for the recombination of Kr+ and F- with density N of the background gas M, taken respectively
as Ne, Ar, Kr and Xe, at 300 K. The reaction rate arn was obtained from (4.12), with (4.17) for
R, and the solution of (4.24) for 3;, and the transport rate from

awr = dne(K,/[1 —exp (- R/R))] + Ky/[1 —exp (~ R./Ry)}}. (4.26)
Results from the universal Monte-Carlo plot procedure of Bates (1980 5) are also shown in figure 2
together with the direct Monte-Carlo computer simulations of Morgan et al. (1980) at low N+,
The general agreement as shown can be considered excellent. Atlow N, arn <€ air while at high N,
@rn 3> atr 50 that a is given by the ratc-limiting step in each region. As N increases, a,y increases
with respect to ar until the maximum is obtained where arn = air. Figure 2 can be made
universal for all temperatures T by simply relabelling the ordinate and abscissa axes as ( 7/300) a
and (300/T)} N respectively as pointed out by Bates (1980¢). Analogous results for other
systems are presented elsewhere (Flannery 1981 5).

At higher N*, the interaction between the ions varies in general with a, and is accurately
determined by (4.11) which therefore must be coupled to the equation (whether basic as (2.52)
or phenomenological as (4.12)) for «. Athigh gas densities (N > }N,), Morgan et al. (1980) simply
adopted ab initio the D.H. interaction (4.11¢) as a2 means of incorporating plasma sheathing
effects when Nt is raised. As shown in § 4.2 this assumption is without foundation unless N —» 0
and leads to greatly reduced rates which are in error particularly at intermediate and high gas
densities N(Bates 1981, Flannery 1981¢). Although increase in the ion density to about 10'2cm-3
is not expected to cause appreciable change (Flannery 1981¢) to the rates of figure 2, direct
calculation based on the theory of § 4.1 is under way.

5. THEORETICAL SOLUTION OF THE PHASE DENSITY

Since the phase-space density of ions in thermodynamic equilibrium separates quite naturally
into a product of two functions - one of R alone and the other of v; alone -as in (2.13), it remains
convenient initially to express the set in terms of these natural (R, v;) variables rather than (R, E)
the set more natural for expression of the sink. Upon differentiation of (2.20) with respect to R
or from (2.12) directly, we find with the aid of (2.10), that

b 4rv} O h1%4
" {mnzﬁwr(n, on) AR - Tl (NE (R, 1) i ‘a‘k}

[[ 132 Row) Nogo3) - N2 (R, o) o)) Leo(e, ¥) 421 dmy  (5.10)

- N[ T NHRE)K(R)-NNRE) 3 k). (5.18)

1= = M(H) t=N(R)
which is a set of linear integro-differential equations in two variables (rather than guadratic in
N(R,v}) since the gas density Ny(v,) has already been set in (5.1) to its thermodynamic value,
as implied by the condition N+ € Ay ). The speeds vy and v in (5.14a) are given by energy con-
servation with fixed vy, v, and £, The recombination sink at internal energies below E; requircs

that N vanishes for
vr € vo = {2/m{Es~ V(R)IH, R < R(E,). (5.2)

The equilibrium phase density (2.13) in (5.1) ensures that the left-hand side of (5.1) vanishes.
This left-hand side includes the streaming (incompressible) terms while the right-hand side is
the collisional integral that attempts to drive the momentum-space distribution of the system

’
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towards a Maxwellian distribution. For small energy transfers the collision integral reduces
(Flannery 1971, 1972) to that given by the Fokker-Planck equation (which essentially describes
diffusion in momentum space) derived via description of recombination as a Markov process
(Flannery 1971, 1972). For high gas densitics and for high ion densities (more than several A}) the
decreased effect of accelerations and the increased ion-ion screcning effect ensures respectively
that the interaction I € & T such that energy transfers are indeed small, such that the right-hand
side of (5.1) is then best described by the Fokker-Planck cquation.

For dilute ionization, N* € N, two new procedures are proposed with the above comments in
mind for the solution N*(R,v;) of (5.1) subject to certain boundary conditions.

5.1. Separable-equations method
In expression (3.1), let

NE(R,v) = Ny(R,v,) [1 ~Dy(R,vy)], (5.3)
in terms of the equilibrium density
No(R,v)) = 4xR2exp (~ V/kT) Fy(v,), (5.4)
where the Maxwellian speed distribution is
Fy(v) = 4mv}(m/2nk T)texp ( — dmot/k T). (5.5)
Since energy is corserved in the binary ion~neutral encounters,
No(R, ;) Ny(vo) = No(R, vy) No(25), (5.6)
and hence, after some analysis, @ satisfies the set
R [] Moo (1R, 10 ~ @R, )] (g d2) oy

- ¥, 3, 0RE- % ORE|k®] 51
f-—‘\((} t=—-V(R)

subject to the boundary conditions that
®(R,E) >0 for E;>o0, orfor R>
-1 forEy < Es, R < R(E,). (5.8)

In the limit of low gas densities N, the nct rate of change of each of the streaming terms con-
tained within all classical accessible configuration space between zero and R,(E,), the outermost
turning point, effectively balance, since the sink rate is small by comparison, i.e.

NER,v 4m? 0 1 (M 14
2 i ! ot | — * — 5
J'“ 4nR [ yeyo ]dR x &, [4nv,’fo Ik (R,v,)aRdR]. (5.9)

The average rate over all accessible R-space of collisional transitions between levels with
encrgies Ey and E; can be written as,

R,
el B B> = gy [, VPR E) kB, B, R) AR, (5.10)
Ry
where N(E) = [ NER E)aR (5.11)




488 M.R.FLANNERY

Hence, (5.1) reduces, with the aid of (5.9), to
M(Ei)t_i_nﬁu(lfh Ey)) = ‘_ﬁ_sNr(Et) Ckir(Ey, Ex)) (5.12)

which is the ‘ quasi-equilibrium’ result of Bates & Moffett (1966) and of Bates & Flannery (1968)
for ion densities N, appropriate to the limit of low gas densities N and valid when the left-hand
side of (5.7) can be neglected.

As Nisraised the first (spatial diffusion) term on the left-hand side of (5.7) becomes increasingly
important while the second (acceleration) term eventually dominates in the high N-limit. Note,
however, that both these terms must be included from the outset since their combination is
required for thermodynamic equilibrium. Neglect of the acceleration term on the left-hand side
of (5.1) does not yield, upon substitution of (5.3), the expression (5.7) with its acceleration term
set to zero. Effects of diffusion and acceleration are so coupled that various schemes of approxi-
mation are best constructed from (5.7) as origin, rather than from (5.1).

For example, as N is raised, the speed distribution remains essentially Maxwellian while
diffusion effects change, i.c. the correction @; in (5.3) to the Maxwell-Boltzmann distribution
N, exhibits an R-variation alone. Hence the acceleration term in (5.7) can be ncglccted in com-
parison with the diffusion term, and with the substitution in (6.7) of

®,(R,v,) = B}(R,v,) exp (- R/L)), (5.13)
where the length L) = LR, Ey) = vi/NZ kit (R) (5.14)
f

is a function only of v; (see Appendix B) then, after some analysis and reduction, @] satisfies the
set of first-order coupled differential equations

2l(R,E) _ N

oR ”n-—mm¢ t(R, Ey) ky(R) exp[ - R(Li* - L)), (5.15)

which, by standard numerical techniques, can be solved easily subject to the boundary conditions
(5.8).

The above set exhibits a striking similarity to the time-dependent set obtained in collision
treatments based on Dirac’s method of variation of constants (cf. Bates 1961). In f~~t, pertur-
bation procedures based on the strength of the coupling terms ki result in a full hierurchy of
computational schemes of varying degrees of sophistication. For example, the {k;}-matrix is
dominated by its diagonal (elastic) elements (cf. Flannery 1981 a) such that to zero-order the non-
diagonal elements are neglected, i give

¢l o 0)
A= Yo (5.16)
with solution ; X
ARn) = exp{ =3 [ K(RIAR]5 0 (R) > ve (5.17)

which ensures that N{(R = 0,v,)/No(R = 0,v;) in (5.3) vanishes.
In this approximation, the phase density is

R
NI(R,E,) = Ny(R,v,) ‘ 1 - exp[ - RN S ky(R)/u)] cxp[— N jo ku(R) dR/v,]}, (5.18)

........................
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which tends to N, as R — co. It is worthwhile noting, even for approximation (5.18), that a given
by (2.52) predicts a general nonlinear variation with gas density N for which the acceleration
term in (5.7) can be neglected. Since off-diagonal terms are also ignored in this approximation
to @/, there is no coupling with the sink, and (5.18) is valuable only in providing intercsting
insight to the manner in which the diffusion term on the left-hand side of (5.7) affects the
R-distribution of ion pairs. Full coupling with the sink is provided only by solution of the full set
of coupled equations (5.15).

In the limit of high N, (5.18) predictszero a, and the diffusion (R-gradient) termin (5.7) may
therefore be neglected in comparison with the acceleration (vi-gradient) term. With the
substitution

Py(R,v,) = O['(R,v,) exp (v,/V), (5.19)
where the effective speed is
4
KR E) = (5g) [mV She = alRIT(R.E), (5.20

in terms of the acceleration a(R) and of time 7, = L,(s}) /v; between collisions, the set (5.7), with
diffusion ignored, yields, after some analysis and reduction, the set of first-order coupled differ-

ential equations
CO!'(R,E,) N

BB £ O(RE () expl(n/W) — (/)] (5.21)

analogous to the previousset (5.15). This set can also be solved to various degrees of sephistication.
As before, the zero-order approximation follows by neglect of the off-diagonal elements to yield,

W N
o, = v,  a(R)

ky(R) 97, (5.22)

such that O (R,v,) = cxp[ j ki (R) dv,] (5.23)

which vanishes as R — co. Hence in this approximation the phase density is

ov exp[ aV/’RJ. ky(R) dvi“ (5.24)

which exhibits an increasing or decreasing variation with N, depending on the kinetics of the
collision.

For general N however, both diffusion and acceleration terms in (5.7) are effective. With the
assumption that the first solution ®{(R, v,) contains most of the R-variation and that ®'(R,v,)
contains most of the vi-variation, a working approximation for the general case (5.7) is

P(R,v) = §(of + D)), (5.25)

NI(R,E,) = Ny(R, u,){l_cxp[zvmv,zk,,

where @]- 1 are the full solutions of (5.15) and (5.21), respectively.
In the zero-order approximation that ignores the effect of the sink, we have

Ne(R ) = NoRon) {1~ hexp (= MR tu/m) exp =1 [ k,R)

—fexp [va, ;k,,/%] cxp[ "I//E)Rf k,,dv,] (5.26)

:
bnd
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" ' which tends to Ay when R — o¢c or when vy — co. This ‘one-channel’ result is useful in providing
“ ! insight into the overall effect of the diffusion and acceleration terms on the ion distribution.
f ' With (5.26) as a background density, various corrections may then be obtained. The effect of

, the sink is, of course, acknowledged by the full solution of (5.15) and (5.21).
[ : Calculations based on the procedures outlined above are under way and will be presented in

future reports.

5.2. ‘ Distribution in length between collisions’ method: the frequency equation

The second and very effective approach for solution of {5.1) for the ion-phase densities is based
on the recognition that the collisional integral, the right-hand side of (5.1), in contrast to the
‘incompressible’ strcaming terms of the left-hand side, attempts via quasi-discontinuous collisions
to drive the momentum-space part of the distribution towards Maxwellian at a given ion-ion
separation R. With this in mind set the ion-pair distribution as,

Ni(R,v)) = [4xR?A(R) N*] Fy(v,) [1 + P,(R, v,)], (5.27)

where (R} is some negative-ion configuration-space density yet to be determined, and where
®,, which represents the departure of the momentum distribution from the Maxwellian F(v,),
will provide coupling to the recombination sink. On substituting (5.27) in (5.1), by noting that
the acceleration term operating on the Maxwellian produces

4 @ [F(m)] AV/KT) )
o m] = v k) == (5.28)
after some reduction, we obtain (5.1) exactly as
. @ - A(V/kT)®,
o o) [DAR) + s [@ia(R) - ok LDV E0
= (R Foo) | [ [ Nutoo) (@- ) (g a2 dus], (5.29)
where the ﬁ-opcrator is such that
. d d(V/kT)],
Di= [d‘k +-—d/R—)] #(R), (5.30)

and where T, the normalized kinetic energy of ion—ion relative motion is §mu}/kT. The separ-
ation of the collision integral (the right-hand side of (5.29)) into its various components suggcsts

the solution "
Py(R,v,) = —[1/4(R)] DA(R) {,(}, R) (5.31)

where /; is an unknown function principally of v?, but only because of the recombination sink will
depend, in general, on R and Ei. In thermodynamic equilibrium, @; is zero and #(R) is
N-exp (V/kT)such that Diivanishes. Hence the b-operator ineffect projects out the background
R-variation due to outward diffusion and inward mobility and lcaves only that R-variation due
to the presence of the sink alone. When departures from thermodynamic equilibrium are not too
strong we need not restrict Dt to be small but its derivative d(Da) /dR must vanish. Under this
sole approximation (5.29) reduces with the aid of substitution (5.31), and after some analysis, to

[y Wik R)  AV/KT)RL(H, R
UPTTER R T,

C o
| = M[urE) 3 wiR)- S LR E) KR, Ba2)

s-v t=-M
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The frequency v, of ion—-neutral collisions is

vi(vi) = N'=§,‘:vku(R), (5.33)

such that the interval 7, between collisions for ions of speed v; is ¥ and the mean length L;

of their free paths is
Li(vi) = viti = vifvs. (5.34)

When the ion-neutral collisicx. cross section QF or @ for elastic or charge-transfer collisions is
independent of the relative speed, the path length peculiar to speed v; is, as shown in the

Appendix B,
Lifvi) = mdXy/NQ¥-F[(2X, + 1) 3mdy(X}) + X exp (- X)), (5.35)

where @ is the error function which is a function of
= YM}/kT (5.36)
in terms of the reduced mass M of the ion-pair-ncutral system. As X, - oc, Ly > (NQ)* = /.

Hence, (5.32) can be rewritten as

, [lx(R,Ei)_l+al|(R,v?)_O(V/kT)aln(R,vf)]
Ly R R o,

the basic equation to be solved for /; under appropriate boundary conditions.
The negative ion density n, is from (5.27) and (5.31) given by

n (R, E)) = [#(R) - Da(R) |,(R, E,)] Fy(v,) (5.38)

which tends to n, as E; - oo, i.e.

=N E LRE)k(R),  (537)

f=-M

~Da(R)U(R,0) = N-exp (- V/kT). (5.39)
With use of (5.30) and an integrating factor, (5.39) is solved to yield
A(R) = N-exp (— V/kT)exp[R/I(R,0)] f expl— ,’;/ éo f ©) 4g, (5.40)

which tends to the appropriate thermodynamic value N-exp (— V/kT) as R - o0. Hence, the
overall phase density is

n(R,E) = N-exp (- V/KT)F, {" (R, E) +[1 -’;((1’:—’2))]1{(5,)
« exp[R/I(R, ]j expl -~ R/lRw]dR}, (5.41)

where the Heaviside step function H is unity only for energies E; in the continuum (as implied by
the R — o limit).
As E, - o, (5.41) casures that n; - ny; and as R - o, n; — n, implies that
WR,E) - li(x,E) =(oc,0) =1,. (5.42)

Hence the sct (5.37) is solved subject to the condition (5.42). As E; — oo, the right-hand side
of {3.37) vanishes, L; - [, and hence

I(R, o0) MR, ) C(V/kT)[CL(R,E) _ .
I -1+ R R T, ]1',»47_‘0. (5.43)
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For infinite E; or T;, the last term on the left-hand side of (5.43) vanishes and the resulting
cquation can be solved, subject to the condition of vanishing {;(R -> 0,0, to give

UR, x; =1 [1—exp(-R/L,)], (5.44)

which satisfies (5.42; and which also ensurcs that (¢{,/CR)j, .. vanishes. Hence the phase density
1s given by (5.41) in terms of (5.44; and of {,(R, E;), the solution of (5.37) over a spectrum of
(R, Ey)-values subject to I(R,20) as E; -» x. Each solution will depend on the gas density V
through /.

At high gas densities, /. — 0,/(R, ) > o, and (5.41) tends to its thermodynamic equilibrium
value, as expected. At low gas densities /,, > o, and

{i(R, Ei) -~ l(R, ) y(Ey), (5.45)
where y(£}) is a function only of Ey and is unity for E; > 0. Hence (5.41) yields
n(R,E,) = N-exp (= V/kT) Fy(v)) {y(E)) +[1 - y(E)] H(E))}. (5.46)

The expres..on (5.37) for the distribution in the lengths l;(R, E;) between collisions for usc in
(5.41) and hence in the recombination coefficient @ in (2.52) is, apart from the neglect of
d[bﬁ(R)]/dR in (3.29), exact. The chief distinction between this proposed method and the
previous method is that /; is, in the absence of the recombination sink, a function only of v?, while
&, in (5.3) is a function of both R and v;. Hence the R-dependence in /;(R, v}) results only from the
sink; the backg-ound R-dependence due to outward diffusion and mobility being acknowledged
already by A(R).

The physical meaning of the functions 7 and /; in (5.27) and (5.31) becomes apparent by
noting that the current density (ions cm~25-1) is

"S = il(R) Vg = J.ni(R, Ul) LA d‘v,, (5.47)
which with the aid of (5.27) and (5.31) reduces, after some analysis, to
da_ _ C(V/kT)] g ~
Jy= -Ds[ﬁ“u{) ( a/R )]R (5.48)
where Dg = -:l;fm Fy(v)) 00y (v8) dy, (cm?s—1) (5.49)
l‘in(R)

is the diffusion coefficient in the presence of the sink for ions with the radial distribution 7 R}.
The factor of } in (5.49) arises by adopting the radial direction R as the Z-axis for vi-integration
of (5.47). Hence /,(v}) is an actual path length at ion speed v, (and not a phenomenological mcan
frce path), such that the diffusion cocfficient that would be mcasured in a recombination

experiment is
D, = ¥{,v)) (cm?s™1), (5.50)
an average over the ion-distribution in the presence of the recombination sink. In light of this
relation and of {5.34), the basic equation (3.37) which proviaes the average rate of increase of
l; between collisions can be referred to as the frequency equation.

As before, a hieraichy of approximate computational schemes can be proposed for evaluation
of [({R, E}) from (5.37). Since A(R) contains most of the background R-dependence, we can
assume, with the aid of (5.44), that on the left-hand side of (5.32)

o 2 N
(;ll(aljsh) N (I(fl,?oc) — exp (= R/L),

,A
-t
-t
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THEORY OF ION-ION RECOMBINATION 493
and neglect initially the acceleration term d(V/kT)/0R. The resulting set of equations,
C
u[MRE) e (~R/)| = N E_W(RE) (R (5.5
1(v) ="M

can be evaluated by normal computational techniques.

6. SuMMARY

In this paper a basic microscopic theory of ion~ion recombination as a function of gas density N
has been presented. We have developed a basic equation (2.20), a linear Boltzmann equation, for the
distribution in phase space ofion pairs, and have proposed in § 5 effective methods - the ‘separable-
equations’ method and the ‘distribution in length between collisions’ method - for its steady-
state solution. An expression (2.52) for the recombination coefficient a in terms of the phasc-space
distributions has been constructed from the flux equation (2.43), a combination of the equation of
continuity (2.30) and of the momentum equation (2.36), both of which have been derived from basic
microscopic principles, i.e. the macroscopic effects are truly addressed in language of their micro-
scopic origins in the presence of the recombination sink.

An alternative expression (2.59) for « has been derived in terms of a,,, the rate of reaction or,
equivalently, the recombination coefficient that would pertain provided a Boltzmann distri-
bution of ions were maintained, and of ai,, the rate of ionic transport by diffusional drift. The
steady-state recombination rate is determined at any gas density N by the rate-limiting steps of
reaction and transport which proceed in series. This expression not only provides interesting
insights into the internal workings of recombination, as in § 2.4, but is also very valuable when
alternative means (as in §4.2) are used to deduce reliable reaction rates «,, alone, without the
necessity of solving the linear Boltzmann equation (2.20). Further theoretical development of
this expression reveals in § 3 an N-variation of « consistent with both the nonlinear rise at low N of
Thomson’s expression, which therefore can be identified with the reaction rate, and with the
N-l-decrease in Langevin’s result which is the transport rate.

The basic time evolution of recombination is developed in §2.4 where the Dcbye-
Smoluchowski time-dependent equation (2.89), which is a natural consequence of the present
basic theory, is solved for the time dependence of the density of ions undergoing diffusional drift
in an arbitrary spherical potential and a reactive sink. This solution cnables us to investigate
analytically the explicit variation of the recombination rate a(¢) with time. For an initial
Boltzmann distribution, «(¢) is initially determined by the reaction rate, as expected, and tends
atlarge {(» §%/D) toits steady-state limit determined by the limiting rate of reaction or transport.
For N £ M, a straight-line dependence of a(¢) with ¢ is noted, since the reaction rate is always
much slower, while high ¥ > Ny, produces the interesting effect of transition between reaction
(initially) and transport, which are the two series components of recombination. This time
variation is such that it would permit verification by techniques of modern laser spectroscopy
and by appropriate Monte-Carlo computer experiments. Such time dependences will be very
important in many applications ranging from medical radiology and biophysics to icnization
tracks.

As N=is raised, the ion—ion interaction V is, in general, obtained as described in § 4 from the
self-consistent solution of the linear Boltzmann equation (2.20) for the phase-space densities,
coupled to Poisson’s nonlinear equation (4.5) for the radial number densities. The recombination
rate a can then be determined as a function of both N and Nt, Otherwise, if the analytic reaction
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rate xry is known in terms of ¥ as in § 4.2, then Poisson’s equation can be solved directly for V.
Use of a model for 2, has been illustrated for Kr*~F~ recombination as a function of N for various

rare gascs,
In conclusion, basic theory has been presented here that thoroughly investigates the recombi-

nation rate as a function of gas density, ion density and time.

APPENDIX A. ANALOGY WITH CONDUCTING SPHERE

Introduce a single conducting sphere of radius S held at constant potential ¢ into a field of
constant potential ¢. The potential ¢ at any point R from the centre of the sphere satisfics

Laplace’s equation, Vi =0 (A1)
with solution P(R) = go[1 - (S/R) (1 — $5/¢0)]. (A2)
The total charge induced on the sphere is
1
0= =g [ T4-dS = — (1 - 95/00). (A3)

For recombination, the steady-state diffusional-drift current j towards a central positive ion
satisfies (2.68), i.e. '
Vj=V.[Dexp(—V/kT)Vn-exp (V/kT)] = 0, (A4)
subjectton = N~ atinfinity and ton = ngat the surface of the sink of radius S, respectively. When
the field V'is neglected, the resulting Laplace’s equation is solved to give the density

n~(R) = N-[1—(S/R) (1 —ns/N")}. (A5)

The flux across any R-sphere is,

F- = 4rnSD(1 —ng/N-) N- = a4(1 —ng/N-) N- = aN-, (A 6)
where 2, is the recombination rate « appropriate to instantaneous reaction (ng = 0). Analogy
with electrostatics then follows by identifying the local ion density n— with the local potential ¢,
and the flux ofions across § with the induced charge. Hence, the recombination rate « is equivalent
to 4nD times the ‘induced charge ¢,’ per unit ‘external potential ¢, and the transport rate a, is
47D times the ‘induced charge ¢/’ per unit ‘ potential difference (¢5 — ¢,) . Introduce a reaction
rate x, at § by agns = alN-, (A7)

which equates the incident flux with the rate (s-1) of reaction. Thus the reaction rate a;, is 4D
times the ‘induced charge ¢1’ per ‘unit surface potential ¢g’. Thus a, a, and a4 may be regarded as
appropriate capacitances of the sphere associated with potentials ¢, ¢5 and ¢g ~ ¢, respectively.

From (A6) and (A7), 1a = 1/ay+1/ag (AB)

showing that the overall rate (cm3s-1) is equivalent to a capacitance associated with potential ¢
joined in series to a capacitance with potential ¢ — ¢,. This analogy is similar in spirit to that of

Bates (1974).
For non-zero I, (A 4) can be reduced to Laplace’s equation (A 1) via transformations (2.105)

and (2.107). The above analogy between ¢ in (A1)-(A3) and nexp (V/kT) is preserved in
R-space. The equivalent solution is then

n~(R) = N-exp (—V/kT){1 - (§/R) (1 -naexp[V(S)/kT1/N-)}, (A9)
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THEORY OF ION-ION RECOMBINATION 195
which is analogous with (A 2). With the aid of (2.105), the inward flux across any R-sphere is
F- = 4nR*Dexp (- V/kT)[dn(R)exp (V/kT) /dR] (A 10)
= 4nD N-8{1 — (ns/N-) exp[V(S)/k T}, (A1)
such that, with (A7), t/a = 1/aem+1/a | (A12)
where the diffusional-drift transport rate that replaces a4 is
air = 428D = 4nD / f " exp (V/kT)R-*dR (A13)
as in (2.115), and where the reaction rate is ’
arn = azexp[ - V(S)/kT]. (A14)

This analogy may be extended to cover the case where there are many non-overlapping
conducting and identical spheres. A charge on one reference sphere induces on the remaining
spheres an image charge that can be replaced by an induced charge and a dipole located at each
centre. A self-consistent set of charges and dipoles are set up. The recombination coefficient
pertinent to a large number of positive ions is then given by 4r.D times the self-consistent ‘induced
charge’ per unit potential ¢, at infinity. This analogy furnishes 2 method whereby the com-
petition for flux between the various non overlapping sinks can be acknowledged and is therefore
relevant to the case of high ion density.

APPENDIX B. THE PECULIAR MEAN FREE PATH

The path length of an ion moving with speed v; in a gas of density N is defined by equation
(5:14) as Li(o) = w/[N Ske(R)], (B1)
where the denominator is the frequency »; for all elastic ion—neutral collisions that leave an

R-ion pairin all states of binding (bound and dissociative) at fixed internal separation R. Thus, the
collisional rate (cm3s-!) between an ion 7 and a gas atom 3 is

Sku(R) = [~ (BB R)AE = 3 [ "Gl dos [ gotev)d(cos)ap [ e, (B

where £=90,—v5; U=0,9 (B3)

and where G is the distribution of gas speeds v;. The differential cross section for i-3 scattering in
the -3 centre-of-mass reference frame is o, which for isotropic (hard-sphere) scattering inde-
pendent of the (thermal) impact speed is Q/4r in terms of the integral cross section Q. Hence

She(R) = Q fo G(vg) dos(oy + 408/2), y > b,

= 0 Gloy) dusfoy +41t/os), v, < m, (B4)

which reduces, for a Maxwellian distribution with respect to the centre of mass of the ion pair, to

Shu(R) = §Q () [(2XE + Xih) it Oy(XY) +exp (- X))}, (B5)

where X, = (}Mo}/kT) (B6)
35 Vol. 304. A

)TN PV DU U P S S T SN Wi




e o

hat

TEVTPryrreTy

Y ey

PP S T N AT L. Ry S I L - [ O R VT S Sy S VT
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in terms of the reduced mass M of the (ion-pair—gas) system, where
2 X
vrJo

is the probability integral (or error function), and where {v;) is the mean thermal spced
(8kT/rnM)} of the gas atoms. The total rate (B5) tends to Q{v;) and to @ v as »; - 0 and as
v; = o0, respectively. Equation (5.35) for L; in the text is therefore recovered from (B 1) and (B 5.)
We note that

opxh) =2 [Mexp(-)de = 7'1-‘ f:“E‘lexp(—E) dE, (B7)

Ly(v)) /Ly(e0) = md X,/[(2X, + 1) §n} D(X}) + XEexp (- X,)], (BS)

increases monotonically with v; from zero to unity. The results (B5) and (B 8) hold for either
elastic or charge-transfer ion~neutral collisions with cross sections ¢ assumed to be independent
of the relative speed.

This research is sponsored by the U.S. Air Force Office of Scientific Research under grant
no. AFOSR-80-0055.
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Analytical solution of the Debye-Smoluchowski equation
for geminate and homogeneous recombination
and for flourescence quenching
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Closed-form analytical time-dependent solutions of the Debye-Smoluchowski equation
with a general spherical interaction are obtained for the important cases of geminate and
homogeneous recombination by diffusional drift in a gas of liquid medium. A relation-
ship between the time-dependent probability for recombination or escape in geminate
recombination and the transient rate for homogeneous recombination is established. An
expression for the rate of decay of emitted intensity in fluorescence quenching is also de-

rived.

When a dissociated pair 4 and B is generated in-
stantaneously within a gas or liquid medium then
the (4 — B) pair may react internally or escape by
diffusional drift in the presence of a sink to infin-
ite separation. The key quantity in this geminate
recombination process is the probability #(t) or
3(¢) for recombination or survival, respectively, of
the dissociating pair at time £. When reaction oc-
curs between a central species 4 and another of the
species B created within the medium by a continu-
ous source at infinity (or else by escape from gem-
inate recombination), then this recombination is
homogeneous and is characterized by an effective
two-body coefficient a(f) cm®s—' appropriate to
termolecular reactions. Contact has recently been
established' between the basic microscopic (phase-
space) theory of chemical reactions influenced by
diffusional drift in a medium and the (Debye-
Smoluchowski) macroscopic equation of continuity

_On

T
for the probability density n (R,?) for finding an
AB pair with internal separation R >S. Here a; is
the local rate of reaction (via three-body AB col-
lisions with the medium) for AB pairs brought to
internal separation § by the diffusional-drift
current J =~ ¢ with

F(R=DTn(R,)+(K/em(R,OVV(R) (20)
= D{expl — V/kT)Vn(R,0expl V /kT))

LZRO+VT,(RO=amsR-F) (m

(2b)
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expressed as a generalized Fick’s law by use in (2a)
of the Einstein relation (De =K kT) between the
diffusion coefficient D (cm?s~') and mobility K
(cm?/statvolt s) for relative-4B motion in the gas
or liquid medium. Equation (1) is equivalent to
the corresponding homogeneous equation solved
subject to the partially absorbing boundary condi-
tion

4xSU(S,)=a;n(S,1) 3

which assumes that the net inward radial diffu-
sional-drift current at S is absorbed by reaction
within §.

It has recently been shown' how analytical
time-dependent solutions of (1) for an arbitrary
spherical interaction can, in general, be obtained in
closed form via introduction of the tnnsformmon
from the variable R to

= [ eptv/kDR 4R )™ @

which then reduces (1) to a form capable of exact
solution for R > the natural unit (n.u.) at which
the thermal (k7)) and potential (V) energies are
equal. It is the purpose of this communication to
briefly summarize the key results obtained for
geminate and homogeneous recombination.
Recombination is used here in its most general
sense of any chemical reaction influenced by dif-
fusional drift in a gas or liquid (electron-ion and
ion-ion neutralization, coagulation of colloids, elec-
trolytic reactions, chemical conversions, etc.).

On setting

3403 ©1982 The American Physical Society
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n'(r,f)=:‘:;n(x,:)expvm.;/kr;

~

=R _,
S

r=Dt/S* (8)

then the homogeneous equation corresponding to
(1) reduces to

on’ *n’

3 (F,r)= [dr Yo —(F,1)
_ o dF d2 L M
T ar? dr | &2 or

which suggests the following two procedures for
solution: Assume (d7/dr) remains constant such
that introduction of

2
Hr)= L4 ] r (7a)
dr
in (6) yields®
L ?)—az—"(r.‘r) (To)
F o

which is the field-free diffusion equation in (F,7)
space. Alternatively, since the coefficient on the
right hand side of (6),

2]%-

vanishes to O(R ~*) for the Coulomb interaction
and is negligible for R*>> SR2=S(e?/kT),
then
an
or
the one-dimensional diffusion equation in (7,7)
space. The radiation boundary condition (3) in
cases (7b) and (8b) is

[ —5expl V/kT)—- 2

+ ﬁ( V/kT)] (8a)

n’

(r,7)= -a—'T N XN (8b)

an Lo n'(0,¢) (9a)
o o
or
an’ aw |§__vis) |,
a o- po sexp xT I 0,0), (9b)
respectively, where

apna
= R:'N+¢:'R (10a)
in terms of the reaction rate at S,
apy =ayexp| — V(S)/kT) (10b)
at S, and of the transport rate at S:
app=47DS . (10c)

When agy >> a, as at high N, then (9a) implies
full absorption with zero n'(0,¢) and when
apy <<a, as a low N, then (9a) implics partial ab-
sorption with zero (3n' /97 ).
For geminate recombination, the solution of (1),
subject to the initial condition
n(R,t =0)=A8(R —Ro)/4nR} (11a)

for instantaneous generation of .+
=4"exp[ — V(R)/kT] species A at a fixed dis-
tance Ry from the central, and subject to the boun-
dary condition

n(R— ,t)=0 (11b)

is determined from (8b) and (9b) to be

N expl—V7kT) Ro
(R,t:R,,8)= 2 XR=V/KT) 2o
" oS)= S rRIaDN"” R

X -ﬁlexp( —03)+expl—0)?)

—2X exp(X)exp( 20, X Jerfc(X+Q;)

(12a)
in terms of (4), and of the dimensionless quantities

(R —Ry)
(4Dr)'/2

an
a
For homogeneous recombination, the solution of

(1) subject to the initial and boundary conditions

(R +Ro—2S)

W=
RN = epny7

No(R,t)=

|/1§

Dt Eexp[ ViS)/kT]. (12b)

X(t)= 57

n(R,t =0)

n(n-m.n]"”°°""‘""m/kﬂ (13)

of a Boltzmann equilibrium distribution, is similarly
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n(R,0)= Noexp( — V/kT)

x|1+ -2
arg

2| vy

X [exp(20X JexpX 2erfc(X + Q) —erfcd)

(14a)
where X(1) is defined in (12b), and where
(R—S) _(R-S) |dR
QR,N= = =, (14b
(4D0)'2 ~ (4Dt)'”* | dR (140)

since (dR /dR) is assumed constant. The solutions
(12a) and (14a) are exact at all times over the re-
gion R3> R}, =SR? where (8a) can be assumed
negligible and therefore hold over the relevant
range R >S when S > R,. The steady-rate solu-
tions obtained from (7b) are exact over all R and
are identical with the (¢ — o ) limit of (12a) and
(14a). Both methods-based on (7b) and (8b),
respectively, yield results which become identical
when [R /(dR /dR)} is replaced by R, as in (14b).
The actual diffusion coefficient D in (2) has also
been assumed constant, an assumption which de-
pends on the density of the medium and therefore
valid® when R > 3R,, R,, and 0.2R, at 0.1, 1, and
20 atm, respectively, for Coulombic attraction.

The survival probability that each AB pair has
not reacted in geminate recombination,

1 . =
()= 70 rn(R.l’,Ro,S)dR . (15a)

where the integration is over all volume 7 external
to the surface .# of the spherical sink, is best
evaluated indirectly from
E0=1-2O=1——['undt,  (15b)
AN 70 ’
where the frequency of recombination is

v(r)=-f

y

% l4i=a,n(s,r;ko,m (15¢)

since J; vanishes at infinity and within 7.
Without loss of generality, a coincident source

and sink (R 2S) can be assumed in (15b) with

(15c) and (12a), so that the recombination probabil-

ity is

2 ()= —2—[1 - expxtlerfcX(0)] (15d)
ara

vvvvvvvvvv

which tends at long times ¢ >>S%/D to
agpy/(agy +arg). From the rate of decrease in
the number of diffusional-drift species outside S
the rate coefficient a(¢) for homogenous recom-
bination is

d

S [ nRndR—5,

1
alt)=— 7

No

=a;n(S,t)/Ny , (16)

where & _, is the net inward flux generated con-
tinuously at infinity. With the aid of (14a),

0

arr

alt)=a|l+ eprz(S,t)uch(S,t)] . an

From (15d), (17), and (10a), we obtain
a(t)=agyX(t)—=arg P{o) (18)

between the transient rate a(t) for homogeneous
recombination and the transient recombination and
escape probabilities 2(¢) and 2(¢), respectively.

When instantaneous generation of 4 occurs at
Ry =S, i.e, reaction may immediately follow, then
the fractional number of A that can be found at
time ¢ within a spherical shell of thickness dR and
centered at B is

F(R,0dR =47R*n(R,1;S,5)dR /4y,  (19)

for geminate recombination.

Figure 1 is a three-dimensional display of the
variation of .#(R,r) with both interseparation R [in
units of the natural length (e2/kT) and in intervals
of 0.05 from R =1.0, the assumed radius of the
sink, to R =2.2] and time ¢ (in units of S*/D and
in intervals of 0.05 from 0.05 to 0.70) for geminate
recombination between positive and negative ions.
Here equal rates of transport and reaction are as-
sumed such that (o) and 2( 0 ) equal 0.5. Each
approximately right-to-left curve provides the
fixed-R variation of #(R,t) with ¢ while each left-
to-right curve provides the fixed-time variation of
F(R,t) with R. The boundary curve F(S,?) pro-
vides the variation with time of the recombination
frequency (1) which decreases to zero as expected.
This figure is a striking illustration of the evolu-
tion with time and separation of an ion pair subject
to reaction and diffusional drift, i.e., of the gem-
inate recombination process.

Figure 2 displays the time variation of the pro-
bability (15d) for geminate recombination. The ini-
tial variation ~0.5 (1—1.37'72) at short times is
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FIG. 1. Evolution of the fractional number #(R,;S)
of ion pairs per unit dR interval with time ¢ [in units of
(S2/D)] and with internal separation R (in units of
R,=e%/kT) appropriate to equal rates ary and agy of
transport and reaction, respectively, at a sink of radius
§S=10(R,).

rapid in comparison with that ~0.5 (1—0.5r~'/%)
at asymptotic times. The bulk of the probability
for geminate recombination (19) is achieved effec-
tively instantaneously within a few $2/D (e.g., &
increases to 0.3 and 0.4 at 7=1 and 5, respective-
ly), a feature apparent also for the homogeneous
case’ with an initial Boltzmann distribution and
continuous source of ionization, particularly for
low gas densities. Fluorescence quenching of excit-
cited fluorphors A® of density n,(t) after an initial
incident laser pulse of excitation is governed by
dn,(t)
dt

ny(D)=n,(O)exp [—:/f, - f:a(t)n,(t)dt] , @

where 7, is the unquenched radiative lifetime of
A® and where n; is the density of the quenching

BRIEF REPORTS

=—[r7 +a(Ong(Dn, (1), (20)

(4

$
1
L

Tims in unins of ($2/D)
FIG. 2. Variation of the probability for geminate
ion-ion recombination with time appropriate to the case
of Fig. 1.

species B with an initial Boltzmann distribution.

If the quenching species B are chemically inert
or if ng >>n,, then ny is effectively constant.
With a(t) given by (17), the integral

) o‘a(t)dt=at [l + [wﬂ ]x"[ expXlerfc
arg
-1 —Zl’/t/f_r)]

22)
which varies as apy?[1—0(t'/2)] and as
at[1—0(z=17)] at short and long times, respec-
tively. Thus the decay law (21) is known exactly
at all times. Note that the collisional quenching
part of n,(t) decreases initially as exp(—agyt) and

after long times as exp[ —a( « )t], as expected.

The full transient fluorescence is governed by (21)
and (22) which is capable of experimental verifica-
tion for any fluorphor-quencher system in a gas or
liquid mediuvm.
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.= "oan 4 us cotistant when the electric-field inten-

sity E divided-by the gas density N <20 10~""
cm?V, i.e., for a Coulomb attraction then
R>Sa =(0.85N, /N)'"(T /300)R, where N_ is
2.69% 10" cm 2.




